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Abstract
The rapid rise of deepfake audio presents a dual reality: enabling innovative
applications like voice assistants and accessibility tools, while also posing severe
risks to security and trust through fraud and misinformation. Modern systems can
clone a voice from just a few seconds of audio, making it hard to distinguish real
from synthetic speech. This study investigates machine learning methods for
detecting deepfake audio, using features such as MFCCs and spectrograms with
classifiers including Random Forests and CNNs on datasets like FoR and
ASVspoof. Results show that combining optimized features with advanced models
significantly boosts detection accuracy. We also address ongoing challenges like
limited data diversity, adversarial attacks, and real-world scalability, alongside
ethical concerns. Our goal is to contribute to the development of reliable and
practical detection systems.
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INTRODUCTION

Figure 1: Spectral texture representation
used in deepfake audio analysis.
1 Introduction

1.1 Background and Motivation

Deepfake technology, once primarily as-
sociated with the manipulation of visual
media, has now advanced into the domain
of speech synthesis. Modern algorithms are
capable of producing highly realistic audio
that closely mirrors the speech
characteristics of real individuals, includ-
ing pitch, tone, rhythm, and even emo-
tional expression. This capability, known as
audio deepfakes, has enabled applications
such as personalized voice assistants,
audiobooks, and entertainment media.
However, the same technology has also
facilitated harmful practices. Fraudsters
have used synthetic voices to impersonate
corporate executives in order to authorize
fraudulent financial transfers, while political
deepfakes have been employed to
manipulate public opinion. The increasing
accessibility of generative tools such as
VALL-E, Resemble.AI, and Descript has
lowered the barrier to entry, allowing
individuals with minimal technical expertise
to create convincing synthetic voices [1], [2].

These developments highlight the urgency
of advancing reliable detection systems that
can protect users, organizations, and society
at large from the risks posed by manipulated
audio.
1.2 Problem Statement

While voice authentication technologies are
widely used in sectors such as finance,
telecommunications, and smart assistants,
they are increasingly vulnerable to
manipulation by deepfake audio.
Traditional anti-spoofing techniques of- ten
fail to detect synthetic voices gener- ated
through advanced architectures such as
WaveNet, Tacotron 2, and GAN-based
vocoders [4][5]. The ability of these models
to capture subtle prosodic and spectral
features of speech makes human and
machine detection particularly challenging.
Moreover, current detection methods face
limitations in terms of dataset diversity,
robustness in noisy environ- ments, and
adaptability to unseen types of attacks. In
forensic contexts, dis- tinguishing between
authentic and fake audio is even more
critical, as manipu- lated recordings can
compromise legal in- vestigations and
judicial processes. De- spite progress in
machine learning and deep learning–based
classification meth- ods, the absence of
standardized bench- marks, explainable
models, and scalable real-time solutions
underscores the press- ing need for further
research and deveopment in this area [29].
1.3 Research Objectives

To address the gaps outlined above, this
study sets out the following research
objectives:

• Examine existing methodologies for
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deepfake audio generation and de-
tection, with emphasis on machine
learning and deep learning approaches.
the role of feature extraction
techniques, particularly Mel-Frequency
Cepstral Coefficients (MFCCs),
spectrograms, and chro- magrams, in
capturing distinctive patterns of
synthetic speech [11].

• Evaluate the effectiveness of Random
Forest classifiers when combined with
MFCC-based features, comparing
performance against alternative
baseline models [9][10].

• Assess limitations and ethical con-
siderations, including dataset con-
straints, adversarial attacks, privacy
risks, and societal implications of de-
tection tools. [1]

• Identify future research directions that
emphasize hybrid ML-DL models,
cross-lingual robustness, realtime
scalability, and interpretability for
forensic applications. [12]

By addressing these objectives, this work
contributes to the broader effort of de-
signing secure, interpretable, and future-
proof frameworks for differentiating be-
tween authentic and manipulated speech.
2 Literature Review

2.1 Evolution of Deepfake Audio Tech-
nology

The development of synthetic audio has
transitioned from rule-based concatena- tive
text-to-speech (TTS) systems to modern
neural vocoders capable of gener- ating

speech that is nearly indistinguish- able
from human voices. Early systems such as
Hidden Markov Model (HMM)- based TTS
were limited in naturalness and adaptability,
while breakthroughs like Google’s WaveNet
and Parallel WaveGAN enabled high-fidelity
wave- form synthesis with improved prosody
and intonation. More recently, self-
supervised learning frameworks such as
Wav2Vec 2.0 and Microsoft’s VALL-E have
made it possible to generate realistic voices
from only a few seconds of audio input.
These advancements have enabled
legitimate applications such as audiobooks,
digital assistants, and accessibility tools, but
also created opportunities for misuse in
social engineering, fraud, and
disinformation campaigns [27].
2.2 Categories of Audio Deepfakes

Audio deepfake techniques are broadly
categorized into three main approaches:
Replay Attacks, Speech Synthesis, and
Voice Conversion.

• Replay Attacks: This involves reusing
or replaying pre-recorded audio of a
target speaker. They are further
classified into far-field replay (captured
from speakers and microphones in
real-world conditions) and copy-paste
replay (direct splicing of recordings) [3].
Recent studies have employed deep
convolutional networks to detect replay-
based manipulations, reporting Equal
Error Rates (EER) close to 0% on
datasets like ASVspoof2017 [14].

• Speech Synthesis (SS): Modern SS
systems rely on deep neural networks
to generate speech from text. Notable
frameworks include Tacotron 2, which
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combines an attention-based recurrent
sequence- to-sequence model with a
modified WaveNet vocoder, and
WaveGlow, which replaces the
traditional two- stage TTS pipeline
with an end-to- end generative flow
model. Commercial tools such as
Lyrebird have demonstrated the ability
to syn- thesize thousands of sentences
per second. GAN-based architectures
have also been proposed for TTS, with
researchers generating large synthetic
datasets comprising hundreds of
thousands of high-quality audio
samples. [5]

• Voice Conversion (VC): This
technique modifies a source speaker’s
voice to resemble that of a target
speaker, preserving linguistic content
while altering vocal identity. VC
models leverage spectral mapping,
pitch shifting, and generative adver-
sarial networks to achieve convincing
impersonation. [6]

2.3 Audio Feature Extraction for Detec- tion

Detecting manipulated speech requires
extracting features that highlight differ-
ences between genuine and synthetic au-
dio. Table 1 summarizes commonly used
features.

Table 1: Comparison of Audio Features
for Deepfake Detection
Feature Advantages Limitations

MFCCs Captures
vocal
spectral
proper-
ties;
efficient
computa-
tion

Misses
temporal
patterns

Spectro-
gram

Rich time-
frequency
detail

High-
dimension
al; comput-
atnally
heavy

Pitch (F0) Detects
unnatural
prosody

Sensitive to
noise

Chroma Useful in
tonal/music
al contexts

Less
effective for
speech

2.4 Machine Learning and Deep Learn-
ing Models for Detection

Research on deepfake audio detection has
leveraged both traditional machine learn-
ing and deep learning methods:

• Traditional ML Approaches: Random
Forest classifiers are valued for
robustness and interpretabilit. Support
Vector Machines (SVMs) have shown
effectiveness on smaller datasets,
though they scale poorly. Gradient
Boosting methods (e.g., XGBoost)
provide strong accuracy and have been
applied to various forensic audio tasks.
[8]

• Deep Learning Approaches:
Convolutional Neural Networks
(CNNs) are effective in analyzing
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spectrograms [14], while Recurrent
Neu- ral Networks (RNNs), particularly
Long Short-Term Memory (LSTM)
models, capture temporal
dependencies in audio [15].
Transformer-based architectures have
more recently set state-of-the-art
performance by learning global
attention patterns across speech
sequences. [17]

2.5 Limitations of Current Methods and
Research Gaps

Despite notable progress, existing detec-
tion frameworks face multiple challenges:

• Dataset Limitations: Many benchmark
datasets (e.g., ASVspoof, FoR) do not
cover the full spectrum
of attack scenarios, languages, and
recording conditions [20].

• Scalability: Deep learning methods
often demand significant computa-
tional resources and training time,
limiting their deployment in real- time
applications [28].

• Robustness in Adverse Conditions:
Detection accuracy deteriorates in
noisy environments, compressed audio
formats, or when tested on previously
unseen generative models [20].

• Ethical and Legal Challenges: The
forensic use of deepfake detection
tools requires explainable models that
can withstand legal scrutiny [30].

Thus, while current machine learning
and deep learning approaches provide
promising accuracy, further research is

required to design hybrid systems, improve
cross-domain generalization, and enhance
adversarial robustness for real-world
deployment [29].

3 Proposed Methodology

Machine learning models for deepfake
audio detection face challenges such as
overfitting, underfitting, and high false-
positive rates, especially when exposed to
unseen data patterns. One of the main
difficulties arises from the limited coverage
of available datasets, as it is impractical to
include all possible variations of genuine
and synthetic speech [19].
To address these issues, this study pro- poses
a comprehensive framework that in- tegrates
robust preprocessing, multi-level feature
extraction, and diverse classifica- tion
models. Figure 2 illustrates the over- all
methodology.

3.1 Dataset Preparation and
Preprocessing

This study employed the Fake-or-Real (FoR)
dataset, consisting of more than 195,000
audio samples, including both genuine
human speech and synthetic speech
generated using Deep Voice 3, Google
WaveNet, and other TTS systems [21]. The
dataset is available in four variants:

• FoR-Original: Raw extracted files
without modifications.

• FoR-Norm: Standardized sampling rate,
volume, and balanced gen- der/class.

• FoR-2sec: Truncated audio segments

h
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limited to 2 seconds.

• FoR-Rerec: Re-recorded 2-second clips
simulating playback over a channel.

Preprocessing steps included removal of
duplicate and corrupted files, normal-
ization of audio signals, zero-padding for
samples under 16,000 points, and appli-
cation of Gaussian noise augmentation to
increase robustness. Standardization was
performed using a StandardScaler to
stabilize training across multiple classifiers.
3.2 Feature Extraction

Feature engineering is crucial for dis-
tinguishing real from synthetic audio. This
study primarily focuses on Mel-Frequency
Cepstral Coefficients (MFCCs), as they
replicate human auditory perception [11].
Each audio file was converted into a
sequence of MFCC vectors using the
Librosa Python library. Additional spectral
and temporal features such as roll-off,
centroid, contrast, bandwidth, zero-crossing
rate, and signal energy were also extracted.
To reduce dimensionality and retain only

the most discriminative attributes, Principal
Component Analysis (PCA) was applied,
reducing 270 raw features to 65 principal
components, explaining 97% of the
variance. this code shows an example of an
MFCC spectrogram representation.
[language=Python] import librosa, numpy

as np
Load audio file y, sr = librosa.load(filepath,

sr = None)
Extract MFCC mfcc = li-

brosa.feature.mfcc(y=y, sr=sr,
nmfcc = 13)mfccmean =
np.mean(mfcc.T, axis = 0)

3.3 Classification Models

We experimented with multiple classifiers
to evaluate the robustness of detection:
3.3.1 Random Forest

Random Forest (RF) is an ensemble method
based on decision trees, leveraging feature
importance to improve classification and
reduce overfitting. In this work, RF was
trained with 100 estimators and an 80-20
train-test split.
[language=Python]
from sklearn.ensemble import
RandomForestClassifier clf=
RandomForestClassifier(nestimators=
100)clf.fit(Xtrain,ytrain)predictions=
clf.predict(Xtest)
3.3.2 Support Vector Machine (SVM)

SVM was applied with an RBF kernel and C
= 4, chosen for its ability to handle high-
dimensional spaces and provide clear
separation boundaries. While
computationally expensive, SVM demon-
strated effective classification when ap- plied
to clean subsets of the dataset.
3.3.3 Multi-Layer Perceptron (MLP)

A neural-based MLP classifier was used with
ReLU activation and hidden layer size of
100. Optimization was performed using
Adam and RMSprop solvers, chosen for
different dataset sizes.

3.3.4 Extreme Gradient Boosting (XG-
Boost)

XGBoost was configured with a learning
rate of 0.1 and 10,000 estimators. Despite
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its efficiency, the model exhibited sensi-
tivity to noise and required extensive pa-
rameter tuning to avoid overfitting.

3.4 Workflow Architecture

Figure 2 presents the structured workflow
of the methodology, beginning with dataset
preprocessing, followed by MFCC and
spectral feature extraction, and end- ing
with classification using machine learning
models.

Figure 2: Workflow of the proposed deep-
fake audio detection framework.

4 Results and Discussion

Our evaluation demonstrated strong per-
formance with 92% accuracy (Table 2).

These results suggest that MFCC features
combined with Random Forest clas-

sification provide an effective approach for
deepfake audio detection.

Metric Score
Accuracy 92%
Precision 1.0
Recall 1.0
F1-score 1.0

Table 2: Performance Metrics

Comparative analysis with previous
studies (Table 3) shows our approach per-
forms competitively with existing meth- ods.

Table 3: Comparison with Existing De-
tection Approaches
Study Model Accuracy
Zhang et al.
(2021)

Random
Forest

89%

Mu¨ller et
al.(2022)

CNN 94%

Jung et al.
(2020)

LSTM 91%

Our
Approach

Random
Forest

92%

5 Challenges and Limitations

• Limited dataset size and diversity may
affect generalizability [19].

• MFCC features might not capture all
subtle synthesis artifacts [11]

• Current implementation lacks real-
time detection capability [28]

• Potential vulnerability to adversarial
attacks [20]

h
h
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6 Challenges and Future Research
Directions

The detection of audio deepfakes (AD) is
still in its early stages compared to image
and video deepfakes [26]. While progress
has been made through the application of
machine learning (ML) and deep learning
(DL) techniques, several open challenges
remain. These challenges highlight not only
the limitations of current approaches but
also provide opportunities for the re- search
community to develop more re- silient and
inclusive solutions.

6.1 Multilingual Limitations in Fake
Audio Detection

Most existing fake audio detection re-
search has been conducted in English, de-
spite the fact that the United Nations
recognizes six official languages and nu-
merous others are widely spoken world-
wide. Languages such as Arabic, Man- darin,
and Hindi remain underexplored [20]. For
instance, Arabic—with over 230 million
native speakers—is characterized by its
complex linguistic structure, including
Classical Arabic (CA), Modern Standard
Arabic (MSA), and diverse regional dialects.

Moreover, Arabic vowels (Fatha,
Damma, Kasra) can completely alter
meaning when mispronounced, posing
additional difficulties for ML/DL-based
detection systems. This linguistic diversity
means that detection models trained solely
on English or resource-rich languages cannot
be expected to generalize effectively.
Addressing multilingual and low-resource
scenarios is therefore a critical direction for

future research, particularly in building
large-scale, multilingual training datasets and
leveraging transfer learning or cross-lingual
embeddings.
6.2 Accent Variability and Its Impact

Another overlooked factor in deepfake de-
tection is the role of accents. While most
existing studies focus on whether an audio
clip is genuine or fake, they rarely consider
accent as a variable that influences detection
accuracy. Research in speaker verification
and recognition has shown that accent
variability can degrade system performance,
suggesting similar vulnerabilities in AD
detection.
Languages such as Arabic or English

include a wide range of regional accents—
Saudi Arabic, for instance, includes Najdi,
Hijazi, and Qassimi dialects, each with
distinct phonetic traits. Without explicit
modeling of accents, classifiers risk
overfitting to certain dialects while
underperforming on others. Future research
should evaluate how accent diversity
impacts detection and
consider accent-robust models, perhaps
through data augmentation, adversarial
training, or meta-learning strategies.
6.3 Excessive Preprocessing and Scala-

bility Issues

Current AD detection methods often re-
quire extensive preprocessing, such as
feature normalization, spectrogram
transformations, and noise filtering. While
these steps can enhance accuracy, they also
hinder scalability and real-time deployment.
An emerging alternative is self-supervised
learning (SSL), which reduces reliance on
labeled data and minimizes preprocessing
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[12].
SSL frameworks such as wav2vec 2.0 and

HuBERT have shown promise in speech
recognition, yet their integration into AD
detection remains underexplored. Early
attempts in this direction indicate potential
but have suffered from relatively low
detection rates. Future work should focus
on adapting SSL architectures for deepfake
detection, balancing efficiency, scalability,
and robustness without sacrificing accuracy.
6.4 Robustness Against Real-World

Noises

Another challenge lies in the vulnerability
of detection models to environmental noise.
Real-world audio is often con- taminated
with background sounds such as wind,
traffic, or overlapping speech, which can be
exploited by attackers to obscure artifacts
left by generative mod- els. Despite the
significance of this issue, only limited
studies have examined detec- tion under
noisy conditions.
Future systems must explicitly incor-

porate noise robustness, either through data
augmentation (e.g., adding synthetic noise
during training), adversarial training, or
noise-invariant feature extraction [20].
Ensuring robustness in “in-the-wild”
scenarios will be crucial for practical
deployment in telecommunication, banking,
and law enforcement applica- tions.
6.5 Imitation-Based Deepfakes: An Un-

derexplored Frontier

Most detection strategies are designed for
synthetic speech generated by models such
as GANs, WaveNet, or Tacotron [4].
However, imitation-based deepfakes—where
a human imitator mimics another speaker—

remain far more challenging to detect, as
they lack the digital artifacts that machine-
generated voices typically produce [3].
Research in this area is sparse, largely due

to the difficulty of collecting large datasets
of imitated speech. Neverthe- less, imitation
attacks pose a realistic threat, especially in
scenarios like phone- based fraud or
impersonation of political leaders. Future
research should explore novel approaches,
possibly involving prosodic features
(intonation, stress, rhythm) or physiological
cues (breathing patterns), to distinguish
imitation from
genuine speech.
7 Conclusion

Our investigation demonstrates that
MFCC-based Random Forest classifiers can
achieve high accuracy in deepfake audio
detection [9, 10, 11]. However, challenges
remain regarding scalability, robustness to
adversarial attacks, and real-time im-
plementation [19, 20, 28]. Future research
should explore deep learning hybrids, larger
datasets, and consider regulatory frame-
works to address the evolving threat of
synthetic media [1, 26, 30].
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