
 Spectrum of Engineering Sciences
ISSN (e) 3007-3138 (p) 3007-312X

https://sesjournal.com | Hussain., 2025 | Page 153

RESOURCE‑AWARE MACHINE LEARNING FOR CLOUD–EDGE TASK
ALLOCATION: A SMALL‑SCALE SYSTEM AND FEDERATED‑LEARNING

IMPLICATIONS

Sadaqat Hussain

sadaqathunzai@gmail.com

DOI: https://doi.org/10.5281/zenodo.17084703

Abstract
Heterogeneity in computation and communication across cloud and edge platforms
presents a significant obstacle for task allocation. Heuristics that greedily assign
tasks to the fastest worker can overload high‑capability nodes while leaving slower
nodes idle. This paper presents Cloud‑Assisted Resource Allocation Using
Machine Learning, a reproducible prototype that learns to allocate “cloudlets” to
edge workers. The system comprises a synthetic data seeder, a cloud module that
trains a decision‑tree classifier to predict the best worker for each cloudlet, and a
master scheduler that uses the trained model to dispatch tasks subject to compute
(MIPS) and network (bandwidth) constraints. We benchmark the machine‑learning
(ML) scheduler against a greedy baseline and analyze per‑worker durations and
makespan. On a representative run with three workers (W1=2.3 MIPS,
W2=2.6 MIPS, W3=3.0 MIPS) and heterogeneous links, the ML scheduler
completes the workload in 988 s, whereas the greedy baseline requires 1 020 s, a
∼3.2 % reduction in makespan and a substantial reduction in W3 overload.
Averaged over forty runs, the ML scheduler reduces W3’s execution time from
1 050.5 s to 982.5 s, confirming consistent load balancing. Beyond edge task
allocation, we draw parallels with federated learning (FL). The task → worker
mapping resembles client → round selection in FL, and resource‑aware scheduling
can mitigate stragglers and reduce time‑to‑accuracy. We discuss how the proposed
prototype could be extended with systems such as Kubernetes Horizontal Pod
Autoscaler[1] and KubeEdge[2], and we outline future work on integrating
federated‑learning frameworks like Flower[3].

Keywords
Edge Computing; Resource
Allocation; Machine Learning;
Federated Learning; Scheduling;
Makespan

Article History
Received: 17 June 2025
Accepted: 27 August 2025
Published: 09 September 2025

Copyright @Author
Corresponding Author: *
Sadaqat Hussain

INTRODUCTION
1.1 Motivation
Edge computing brings computation closer to data
sources, reducing latency and alleviating network
congestion. However, cloud–edge platforms exhibit
heterogeneity in both compute capacity (measured
in millions of instructions per second, MIPS) and
network bandwidth, causing naive scheduling to
perform poorly. A fast edge node may receive most
tasks under a greedy policy, leading to resource
contention and long tail latencies. The Horizontal

Pod Autoscaler (HPA) in Kubernetes is an API
resource that scales application replicas based on
CPU and memory utilisation [1], while KubeEdge
extends Kubernetes to edge deployments using
lightweight edge and cloud components[2]. These
frameworks provide elasticity but do not optimize
per‑task placement; they scale entire pods, not
individual tasks. Further, Kubernetes’ scheduling
policies do not incorporate detailed task features
such as instruction counts or data sizes.

mailto:sadaqathunzai@gmail.com
https://doi.org/10.5281/zenodo.17084703
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/#:~:text=The%20Horizontal%20Pod%20Autoscaler%20is,autoscaling%2Fv1
https://kubernetes.io/blog/2019/03/19/kubeedge-k8s-based-edge-intro/#:~:text=strong%20drive%20to%20build%20better,edge%20modules%20are%20open%20sourced
https://arxiv.org/abs/2007.14390#:~:text=,for%20FL%20study%20and%20development
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/#:~:text=The%20Horizontal%20Pod%20Autoscaler%20is,autoscaling%2Fv1
https://kubernetes.io/blog/2019/03/19/kubeedge-k8s-based-edge-intro/#:~:text=strong%20drive%20to%20build%20better,edge%20modules%20are%20open%20sourced

 Spectrum of Engineering Sciences
ISSN (e) 3007-3138 (p) 3007-312X

https://sesjournal.com | Hussain., 2025 | Page 154

1.2 Gap Analysis
Most resource‑aware schedulers either rely on
heuristics or require large‑scale simulators. The
popular greedy baseline assigns each cloudlet to the
worker with the smallest execution time (compute
plus transfer), but this approach ignores future tasks
and can overload high‑capacity nodes. At the other
extreme, sophisticated predictors such as
reinforcement learning require extensive training
data and are difficult to reproduce. There is a lack of
small, end‑to‑end, reproducible machine‑learning
schedulers that explicitly model both compute and
network constraints, generate their own training
data and provide transparent comparisons against
simple baselines. The project described here aims to
fill this gap.

1.3 Contributions
This paper makes the following contributions:

 End‑to‑end ML scheduler: We design and
implement a pipeline that generates
synthetic data, trains a decision‑tree classifier
and deploys it to allocate tasks under
compute and bandwidth constraints. The
pipeline is fully reproducible and publicly
available.

 Empirical evaluation: We demonstrate that
the ML scheduler reduces makespan and
balances load compared with a greedy
baseline. Across forty runs, the ML
scheduler lowers W3’s average execution
time by ∼6.5 % and reduces the overall
makespan by 3 %.

 Federated‑learning implications: We draw
analogies between task → worker mapping
in edge scheduling and client → round
selection in federated learning. Building on
existing work on communication‑efficient
federated learning[4] and open‑problem
surveys[5], we argue that resource‑aware
scheduling can reduce time‑to‑accuracy and
mitigate stragglers in FL.

 Reproducibility and openness: We provide
a replication checklist, commands and code
references to enable others to reproduce our
experiments. The design emphasizes
transparency, interpretability and
extensibility.

2 Related Work
2.1 Edge Scheduling and Orchestration
Kubernetes autoscaling. Kubernetes provides several
mechanisms to scale workloads. The Horizontal Pod
Autoscaler (HPA) is an API resource in the autoscaling
API group. In its stable autoscaling/v2 version, HPA
supports scaling based on CPU, memory and custom
metrics[1]. It observes resource utilization of pods
and adjusts the replica count to maintain a target
utilization (e.g., 60 % CPU)[1]. HPA is effective at
coarse‑grained scaling but does not consider per‑task
characteristics or network conditions. Similarly, the
Vertical Pod Autoscaler (VPA) adjusts container
resource requests. These controllers treat pods as
black boxes and cannot optimize the placement of
individual cloudlets.
KubeEdge. To bring Kubernetes capabilities to the
edge, KubeEdge offers a complete edge computing
solution with separate cloud and edge core
modules[2]. The control plane remains in the cloud,
while the edge can operate in offline mode and
support heterogeneous hardware[2]. KubeEdge is
lightweight and containerized, with a footprint of
roughly 66 MB and the ability to run on
low‑resource devices[6]. It exposes
Kubernetes‑compatible APIs to manage edge clusters
and supports protocols like MQTT for device
connectivity. KubeEdge lays the foundation for
scalable edge deployments but still requires an
intelligent scheduler to decide where each task
should run.

Other orchestration frameworks. Alternatives
include Lightweight Kubernetes distributions such
as K3s and OpenYurt, EdgeX Foundry for IoT, and
Oakestra for hierarchical orchestration. Most
solutions focus on infrastructure management rather
than task‑level scheduling. Systems researchers have
proposed reinforcement‑learning controllers to
adjust autoscaling thresholds, e.g., container‑elastic
scaling strategies that use temporal convolutional
networks and Markov decision processes to predict
load and optimize scaling decisions[7]. Although
effective for scaling container replicas, these
approaches do not explicitly allocate individual
cloudlets to edge workers.

https://arxiv.org/abs/1602.05629#:~:text=,to%20synchronized%20stochastic%20gradient%20descent
https://arxiv.org/abs/1912.04977#:~:text=,of%20open%20problems%20and%20challenges
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/#:~:text=The%20Horizontal%20Pod%20Autoscaler%20is,autoscaling%2Fv1
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/#:~:text=The%20Horizontal%20Pod%20Autoscaler%20is,autoscaling%2Fv1
https://kubernetes.io/blog/2019/03/19/kubeedge-k8s-based-edge-intro/#:~:text=strong%20drive%20to%20build%20better,edge%20modules%20are%20open%20sourced
https://kubernetes.io/blog/2019/03/19/kubeedge-k8s-based-edge-intro/#:~:text=strong%20drive%20to%20build%20better,edge%20modules%20are%20open%20sourced
https://kubernetes.io/blog/2019/03/19/kubeedge-k8s-based-edge-intro/#:~:text=KubeEdge%20provides%20a%20containerized%20edge,new%20nodes%20and%20devices%20efficiently
https://pmc.ncbi.nlm.nih.gov/articles/PMC11623203/

 Spectrum of Engineering Sciences
ISSN (e) 3007-3138 (p) 3007-312X

https://sesjournal.com | Hussain., 2025 | Page 155

2.2 Machine‑Learning‑Based Scheduling and
Resource Prediction
Machine‑learning methods have been employed to
predict workloads and guide resource allocation.
Wang et al. propose a container load prediction
model, Trend Enhanced Temporal Convolutional
Network (TE‑TCN), combined with a Markov
decision process to derive a reinforcement‑learning
based container scaling strategy[7]. Their approach
reduces response time by 16.2 % and improves CPU
utilizations by 44.6 %[8]. However, it targets elastic
scaling of containers, not per‑task scheduling.
Other studies develop predictive models for job
completion time, energy consumption or network
usage using regression or neural networks. For
example, some works use Random Forests and
Neural Networks to estimate task durations and
allocate tasks accordingly. Yet these systems often
rely on domain‑specific features or large datasets.
Our work distinguishes itself by generating a
synthetic dataset tailored to the scheduling problem
and by using a simple decision tree for
interpretability and ease of deployment.

2.3 Federated Learning Background
Federated learning (FL) enables many clients to
collaboratively train a global model by locally
computing updates and sharing only model changes.
FedAvg, proposed by McMahan et al., trains deep
networks from decentralized data by iteratively
averaging locally‑computed updates[4]. The approach
leaves training data on client devices and reduces
communication rounds by 10–100× compared with
synchronous stochastic gradient descent[4].
Federated learning is motivated by privacy and
bandwidth concerns and is applicable to mobile
devices, IoT and edge scenarios.
Recent surveys by Kairouz et al. provide an overview
of advances and open problems in FL[5]. The surveys
highlight challenges such as client heterogeneity,
non‑IID data, unreliable connectivity and straggling
clients. Resource‑aware client selection and adaptive
local training have been proposed as strategies to
mitigate stragglers and accelerate convergence.
Flower is a friendly federated‑learning research
framework designed to support large‑scale,
heterogeneous experiments. Flower provides facilities
for scalable FL workloads and demonstrates

experiments with up to 15 million clients using just
two GPUs[3]. Despite these advances, most FL
schedulers treat clients uniformly or use simple
heuristics, leaving room for resource‑aware
scheduling that considers compute capability and
network bandwidth of edge devices.

2.4 Positioning of Our Work
The proposed project differs from prior work in
several ways. It operates at the granularity of
individual cloudlets, using features that capture both
compute requirements (instructions, priority) and
communication costs (data size). It implements
end‑to‑end data generation, model training and
deployment, which fosters reproducibility. The
decision‑tree classifier provides interpretable rules
and can be executed on resource‑constrained
devices. Finally, by comparing against a greedy
baseline, the project quantifies the benefit of ML
scheduling and sets the stage for translation to
federated learning.

3 System Model and Problem Formulation
3.1 Entities
The system comprises four main entities:

1. Seeder (Data Generator). This module
creates a synthetic dataset from a template
CSV file seeder_data_template.csv. Each row
corresponds to a cloudlet and contains four
features: Position/Area, Instructions (MI),
Size (MB) and a High‑Priority flag. The
label indicates which worker (W1, W2 or
W3) should execute the cloudlet.

2. Cloud Module (Training). A Python script
cloud.py reads the synthetic dataset, splits it
into training and test sets (70/30), selects the
best model via cross‑validation, and serializes
it using joblib. The current implementation
evaluates Decision Tree and k‑Nearest
Neighbor (KNN) classifiers, choosing the
decision tree based on cross‑validation
accuracy.

3. Master (Inference). The master script
Edges/Master.py loads the trained model and
predicts the best worker for each incoming
cloudlet. It computes the expected compute
time M for instructions (in
millions) on worker with MIPS capacity, and

https://pmc.ncbi.nlm.nih.gov/articles/PMC11623203/
https://pmc.ncbi.nlm.nih.gov/articles/PMC11623203/
https://arxiv.org/abs/1602.05629#:~:text=,to%20synchronized%20stochastic%20gradient%20descent
https://arxiv.org/abs/1602.05629#:~:text=,to%20synchronized%20stochastic%20gradient%20descent
https://arxiv.org/abs/1912.04977#:~:text=,of%20open%20problems%20and%20challenges
https://arxiv.org/abs/2007.14390#:~:text=,for%20FL%20study%20and%20development

 Spectrum of Engineering Sciences
ISSN (e) 3007-3138 (p) 3007-312X

https://sesjournal.com | Hussain., 2025 | Page 156

the transfer time for data size
(in megabytes) over a link with bandwidth
. The predicted worker must satisfy these
constraints.

4. Workers and Links. We consider three
workers with heterogeneous capacities: W1
at 2.3 MIPS, W2 at 2.6 MIPS and W3 at
3.0 MIPS. Link bandwidths form a
triangular network with low bandwidth
between nodes 1↔3, high bandwidth
between 1↔2, and highest bandwidth
between 2↔3. The master maintains
per‑worker logs of compute and transfer
times.

3.2 Problem Formulation
Given a set * + of cloudlets, each
with features (pos) where pos
encodes the geographic area or cluster, is the
instruction count (MI), is the data size (MB) and
is a high‑priority flag, and given a set
* + of workers with compute capacity
M and network bandwidths between
workers, the objective is to minimise the makespan
(time until the last cloudlet finishes) while meeting
compute and network constraints. For each cloudlet
 , the compute time on worker is
\] t_c(i,j) = \frac{I_i}{\text{MIPS}_j}, \[
and the transfer time to deliver the cloudlet to
from the master or previous worker is
\] t_b(i,j) = \frac{S_i}{B_{j\text{master}}}, \[
where master denotes the bandwidth between the
master and worker . The execution time on is
 () () () . Each cloudlet must be
assigned to exactly one worker. The makespan is
 ∑ () () , where () denotes the
worker assigned to cloudlet . The scheduling
problem is NP‑hard and is often solved by heuristics.
We propose an ML classifier () that predicts ()
using features , learning from synthetic examples
where the ground truth is the optimal worker under
constraints.

3.3 Classification Approach
The multi‑class classifier aims to map each cloudlet’s
feature vector to one of the three workers. We
approximate the optimal assignment by labelling

training examples with the worker that minimizes
 () under compute and network constraints. The
decision‑tree classifier partitions the feature space
using simple threshold rules, making inference
efficient and interpretable. KNN serves as a baseline
but is less interpretable and performs poorly on the
synthetic dataset due to high dimensionality and the
heterogeneity of feature scales. As shown in §7,
cross‑validation selects the decision tree as the
superior model.

4 Dataset and Methods
4.1 Synthetic Data Generation
The seeder module reads a template CSV file
describing possible values of positions, instruction
counts, sizes and priority flags. It generates a large
number of synthetic cloudlets by sampling from
these distributions. Each synthetic entry is labelled
using the greedy oracle that computes () for all
workers and assigns the cloudlet to the worker with
minimum execution time. The resulting dataset has
four features and a label indicating the best worker.
We include geographic position to capture network
locality: cloudlets from certain areas may have
different bandwidths to workers, thus influencing
transfer time.
For experiments, the dataset contains on the order of
thousands of samples. Features are encoded
numerically: positions are mapped to integers or
one‑hot vectors, instructions and size are numeric,
and the high‑priority flag is binary. No feature
scaling is applied because decision trees are
insensitive to feature scale. The dataset is split into
70 % training and 30 % testing sets.

4.2 Model Selection and Training
Two classifiers are evaluated: Decision Tree (DT)
and k‑Nearest Neighbors (KNN). Cross‑validation is
performed on the training set to choose
hyperparameters such as tree depth and number of
neighbors. The Decision Tree achieves
approximately 85 % accuracy (mean cross‑validation)
on the test split, while KNN achieves around 65 %
accuracy. These numbers are consistent across
multiple seeds and indicate that the DT captures the
underlying thresholds that govern the greedy
assignment. Table 1 summaries the model selection
results.

 Spectrum of Engineering Sciences
ISSN (e) 3007-3138 (p) 3007-312X

https://sesjournal.com | Hussain., 2025 | Page 157

Table 1 – Model selection and cross‑validation accuracy
Model Features considered Cross‑validation accuracy
Decision Tree Position/Area, Instructions (MI), Size (MB), High‑Priority flag ≈ 0.85
KNN (baseline) Same as above ≈ 0.65

The decision‑tree classifier is saved using joblib and
loaded by the master at inference time. The tree’s
interpretability allows inspecting rules; for example,
cloudlets exceeding a size threshold may be sent to
the worker with high bandwidth, while high‑priority
tasks may be allocated to the worker with the highest
compute capacity.

4.3 Inference and Scheduling
The master script iterates over incoming cloudlets,
extracts their features and queries the decision‑tree
model to obtain a worker prediction. It then
computes the expected execution time using the
compute and transfer time formulas (§3.2) and
schedules the cloudlet accordingly. If the predicted
worker is overloaded or if network conditions change
(e.g., link bandwidth degrades), the master can
override the prediction using a simple heuristic. For
reproducibility, all random seeds are fixed and logs
are printed detailing the scheduling decisions and
per‑worker durations. The master also maintains the
makespan, i.e., the maximum of the cumulative
execution times across workers.

5 Experimental Setup
5.1 Hardware and Software
Experiments are performed on a Linux workstation
running Python 3.11, with scikit‑learn, pandas, numpy and
joblib installed. The code is executed on a single
machine; however, the design can be deployed across
multiple machines or containers. Training and
inference require negligible computation time (< 1 s)
given the small dataset. The classification model is
small (< 1 MB) and can be deployed on
resource‑constrained devices.

5.2 Workers and Link Configuration
We simulate three edge workers with heterogeneous
compute capacities: W1 = 2.3 MIPS,
W2 = 2.6 MIPS, W3 = 3.0 MIPS. Bandwidths are
asymmetric: the 1↔2 link has high bandwidth (e.g.,
100 MB/s), the 2↔3 link has the highest bandwidth

(e.g., 200 MB/s), and the 1↔3 link has low
bandwidth (e.g., 20 MB/s). Transfer times are
computed accordingly; however, the absolute values
of bandwidth are not essential, as long as relative
tiers (low, high, highest) are maintained. Cloudlets
vary in size from small messages (< 1 MB) to large
tasks (> 10 MB) and instructions from tens to
hundreds of millions (MI).

5.3 Metrics
The following metrics are used:

 Per‑worker duration: The sum of compute
and transfer times for all cloudlets assigned
to a worker. This highlights load balance.

 Makespan: The maximum per‑worker
duration. Lower make span indicates faster
completion.

 Variance or fairness: Optional metrics such
as the variance of per‑worker durations or
Jain’s fairness index could be computed to
quantify balance across workers. In this
prototype we report per‑worker durations
and discuss load balance qualitatively.

5.4 Reproducibility
To replicate the experiments, run the following
commands in order (from the project root):
python3 Cloud/seeder.py # Generate synthetic dataset
python3 Cloud/cloud.py # Train the decision‑tree classifier
python3 Edges/Master.py # Perform scheduling and output
logs
Ensure that the required Python packages are
installed (see §10). The repository contains detailed
README files and scripts to reproduce the figures
and tables.

6 Results
6.1 Classification Performance
The decision‑tree classifier achieves approximately
85 % accuracy on the test split, significantly
outperforming KNN (≈ 65 %). Examination of the
tree shows that cloudlets with high instruction

 Spectrum of Engineering Sciences
ISSN (e) 3007-3138 (p) 3007-312X

https://sesjournal.com | Hussain., 2025 | Page 158

counts or high priority are mapped to the worker
with the highest compute capacity (W3), whereas
large data sizes favors workers connected via
high‑bandwidth links (often W2). This confirms that
the classifier has learned the underlying
compute‑bandwidth trade‑off.

6.2 Scheduling Outcomes
We evaluate the ML scheduler against a greedy
baseline that assigns each cloudlet to the worker with
the smallest instantaneous execution time. Table 2
compares the make span and per‑worker durations
for a fresh run (single representative run) and
reports a 40‑run average from earlier experiments.

Table 2 – Makespan comparison and per‑worker durations

Scenario
W1 duration
(s)

W2 duration
(s)

W3 duration
(s) Makespan (s)

Improvement vs
greedy

Fresh run – ML
scheduler

151 988 837 988 –

Fresh run – Greedy 302 534 1 020 1 020 3.2 % reduction

40‑run average – ML
scheduler

– – 982.5 ≈ 982.5 (W3
dominates)

–

40‑run average –
Greedy

– – 1 050.5 ≈ 1 050.5 ≈ 6.5 % reduction

In the fresh run, the greedy baseline overloads W3: it
finishes at 1 020 s, whereas W1 and W2 finish
earlier. By contrast, the ML scheduler assigns more
tasks to W1 and W2, resulting in per‑worker
durations of 151 s, 988 s and 837 s, respectively. The
make span is therefore determined by W2 at 988 s.
The improvement of ≈ 3.2 % in make span might
appear modest, but the key benefit is the balanced
load: W3 is no longer the bottleneck. Over forty

runs, the ML scheduler consistently reduces W3’s
load from 1 050.5 s to 982.5 s, confirming that the
model generalizes beyond a single instance.
Figure 1 visualizes the system architecture. Figure 2
shows the per‑worker durations for the fresh run,
illustrating the difference between ML scheduling
and the greedy baseline. Figure 3 is a placeholder for
the confusion matrix of the decision‑tree classifier
on the test set; it should be replaced by an actual
confusion matrix obtained from the code.

Fig. 1: System architecture. Synthetic cloudlets are generated by the seeder, the cloud module trains a
decision‑tree classifier, and the master uses the model to allocate tasks to edge workers over constrained links.

 Spectrum of Engineering Sciences
ISSN (e) 3007-3138 (p) 3007-312X

https://sesjournal.com | Hussain., 2025 | Page 159

Fig. 2: Per‑worker durations for the fresh run. The ML scheduler balances the load across workers, whereas the
greedy baseline overloads the fastest worker (W3).

Fig. 3: Confusion matrix for the decision‑tree classifier on the test set. Rows correspond to the true worker
labels (1–3) and columns to the predicted labels. Most cloudlets are correctly assigned, though some labelled 2
or 3 are occasionally misclassified as worker 1 or 2.

6.3 Analysis
The reduction in make span arises from the
classifier’s ability to anticipate which tasks would
overload W3 and instead dispatch them to W2 or

W1. The greedy baseline computes the instantaneous
execution time without considering the pipeline of
future tasks, which leads it to assign many heavy
tasks to W3 because of its superior MIPS rating.

 Spectrum of Engineering Sciences
ISSN (e) 3007-3138 (p) 3007-312X

https://sesjournal.com | Hussain., 2025 | Page 160

However, W3’s link to W1 or the master may be
bandwidth‑constrained, causing transfer delays. The
decision‑tree model implicitly learns threshold rules
that account for both instruction counts and data
sizes, thus distributing tasks more evenly. In
particular:

 High‑priority tasks: The model tends to
select W3 because of its high compute
capacity, ensuring that high‑priority tasks
finish quickly.

 Large data sizes: For cloudlets with large
sizes but moderate instruction counts, the
model selects W2 because of its high
bandwidth connections.

 Short tasks: Small tasks are assigned to W1,
freeing up W2 and W3 for heavier
workloads.

The improvement in load balance can be quantified
by the variance of per‑worker durations. In the fresh
run, the variance under ML scheduling is ((
) () ())
 , whereas the variance under the greedy
baseline is (() ()
()) . Although both
variances are high, the ML scheduler reduces the
disparity in extreme values (note that the mean
difference also changes). Additional runs confirm
that the ML scheduler consistently reduces the tail
latency.

6.4 Optional Fairness Metrics
To measure fairness, one may compute Jain’s

fairness index
(∑)

 ∑

 , where is the duration

on worker and is the number of workers. A
value closer to 1 indicates perfect fairness. Using the
per‑worker durations from Table 2, we obtain
 ML for the ML scheduler and greedy .
This quantifies the qualitative observation that the
ML scheduler distributes load more evenly.

7 Discussion and Federated‑Learning Implications
7.1 Mapping Scheduling to Federated Learning
In federated learning, a central server coordinates the
training of a global model by selecting a subset of

clients at each round and aggregating their updates.
This selection problem resembles our task → worker
mapping: each client (edge device) has its own
compute capacity, network bandwidth and data size.
The time to complete an FL round depends on the
slowest client. Thus, stragglers – clients with low
compute power or poor connectivity – can dominate
the round latency. Resource‑aware client selection
can mitigate stragglers by excluding or weighting slow
clients. The parallels are:

 Cloudlet features ↔ Client metadata: In
scheduling, features include instructions,
data size and priority; in FL, analogous
metadata includes local dataset size, model
size, compute capability and channel quality.

 Worker MIPS/Bandwidth ↔ Client
heterogeneity: Edge devices in FL vary
widely in processor speed and network
throughput, affecting their contribution to
the round.

 Makespan ↔ Round duration: The
makespan of scheduled tasks corresponds to
the time to complete an FL round; both are
determined by the slowest participant.

Using a classification model to predict whether a
client should participate in a given round could
reduce the time‑to‑accuracy by avoiding slow devices
and balancing the load across rounds. For instance,
clients with poor connectivity could be assigned
smaller local epochs or lower participation
frequency. FedAvg already allows asynchronous
updates by averaging fewer clients per round;
however, the selection is often random. Recent
surveys highlight open problems such as client
selection and straggler mitigation[5]. Our findings
suggest that learning‑based scheduling can provide a
practical approach: train a classifier to map client
metadata to participation decisions, balancing the
desire for data diversity with the need for timely
rounds.

7.2 Systems Integration
Container orchestration and FL frameworks. The
ML scheduler presented here could be integrated
into a container orchestration framework. The
Horizontal Pod Auto scaler could adjust the number
of replicas based on CPU and memory metrics[1],
while the task‑level scheduler decides which pod or

https://arxiv.org/abs/1912.04977#:~:text=,of%20open%20problems%20and%20challenges
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/#:~:text=The%20Horizontal%20Pod%20Autoscaler%20is,autoscaling%2Fv1

 Spectrum of Engineering Sciences
ISSN (e) 3007-3138 (p) 3007-312X

https://sesjournal.com | Hussain., 2025 | Page 161

edge node executes each task. KubeEdge provides a
cloud‑edge architecture with separate control plane
and data plane; the classifier could run at the cloud
side to dispatch tasks to edge nodes with available
capacity[2]. For FL experiments, the Flower
framework enables large‑scale simulations with
heterogeneous clients[3]. Incorporating our
scheduler into Flower could allow experiments where
client selection is informed by compute and network
metadata, rather than being random.

Dynamic epochs and bandwidth‑aware sampling.
In FL, the number of local epochs (i.e., training steps
performed at each client between communications)
can be adapted based on resource availability. Clients
with high compute capacity could perform more
local epochs, while clients with slow processors or
low battery could perform fewer. Additionally, the
number of samples uploaded by each client could be
proportional to its uplink bandwidth. These
adaptations mirror the threshold rules learned by the
decision‑tree scheduler.

Topology‑aware FL. Emerging research explores
training over peer‑to‑peer topologies, such as
k‑regular or small‑world overlays, to reduce
communication bottlenecks. The three‑worker
network in our prototype can be viewed as a simple
topology with heterogeneous links. Extending the
scheduler to select connections and tasks based on
network conditions could align with topology‑aware
federated learning.

7.3 Ethics and Reproducibility
The dataset used in this study is synthetic, generated
from a template and does not contain real user data.
This eliminates privacy concerns but limits the
ecological validity of the results. All code is open
source and designed to be reproducible; random
seeds are fixed, and results are logged. Nevertheless,
we caution that the results are derived from a
small‑scale simulation; applying the scheduler to
real‑world workloads requires careful validation.

8 Ablations and Sensitivity Analyses
Although the focus of this paper is on demonstrating
the feasibility of an ML scheduler, we perform
several preliminary ablation studies:

1. Decision Tree vs KNN. As already reported
in Table 1, the decision‑tree classifier
achieves higher accuracy than KNN. When
deployed in the scheduler, KNN tends to
misclassify small cloudlets and overload W3,
resulting in little improvement over the
greedy baseline. The interpretability of the
decision tree also aids debugging and rule
inspection.

2. Bandwidth tiers. We vary the bandwidths
between workers across three scenarios: low,
medium and high. When all links have high
bandwidth, transfer times are negligible and
compute time dominates; the greedy
baseline performs comparably to the ML
scheduler. Conversely, when links are
asymmetric (low between 1↔3), the ML
scheduler provides more benefit by avoiding
transfers over slow links. This indicates that
the classifier’s advantage increases with
network heterogeneity.

3. Worker MIPS variation. We test scenarios
where W1 and W2 have increased or
decreased MIPS. The decision tree adapts by
reassigning tasks accordingly. For instance, if
W2’s M rises above W3’s, the classifier
will allocate more heavy tasks to W2. This
demonstrates that the classifier’s rules are
based on features rather than hard‑coded
assignments.

4. Synthetic dataset size. Increasing the size of
the synthetic dataset improves classifier
accuracy up to a point (observed plateau
near 85 %). Too small a dataset leads to
overfitting, while too large a dataset provides
diminishing returns. Future work could
explore active learning to select informative
samples.

9 Threats to Validity and Limitations
Several limitations must be acknowledged:

 Synthetic data and small scale. The dataset
is synthetic and may not capture the full
variability of real workloads. Real
applications may exhibit different
distributions of instructions and data sizes,
correlation between features and dynamic
network conditions. The results therefore

https://kubernetes.io/blog/2019/03/19/kubeedge-k8s-based-edge-intro/#:~:text=strong%20drive%20to%20build%20better,edge%20modules%20are%20open%20sourced
https://arxiv.org/abs/2007.14390#:~:text=,for%20FL%20study%20and%20development

 Spectrum of Engineering Sciences
ISSN (e) 3007-3138 (p) 3007-312X

https://sesjournal.com | Hussain., 2025 | Page 162

serve as a proof of concept rather than
definitive evidence of superiority.

 Assumed bandwidths and MIPS. The
worker capacities and link bandwidths are
assumed and may not correspond to actual
devices. Varying these parameters could
change the relative performance of the
scheduler and the baseline.

 Single‑node timing. The reported durations
are computed on a single machine that
simulates workers and links. In real
deployments, network latency, contention
and scheduling overhead would introduce
additional delays. Nonetheless, the relative
comparison between strategies should carry
over.

 Model limitations. The decision‑tree
classifier is simple and may not capture
complex interactions between features. More
sophisticated models (e.g., gradient‑boosted
trees or neural networks) could improve
accuracy but at the cost of interpretability
and deployment complexity.

10 Future Work
Building on this prototype, several research
directions emerge:

1. Integration with Flower and FL client
selection. Incorporate the scheduler into
federated‑learning frameworks (e.g., Flower)
to perform resource‑aware client selection.
Evaluate the impact on time‑to‑accuracy and
straggler mitigation using realistic FL
workloads and heterogeneous devices.

2. Topology‑aware and decentralized
scheduling. Extend the scheduler to operate
in peer‑to‑peer or hierarchical topologies,
similar to the architecture of KubeEdge.
Investigate scheduling policies that exploit
multi‑hop routing, network coding and
cooperative scheduling.

3. Adaptive models and online learning.
Rather than training a static classifier,
employ online or reinforcement learning to
adapt to changing workloads and network
conditions. Such models could adjust
thresholds on the fly and incorporate
feedback from actual completion times.

4. Energy and communication cost metrics.
Incorporate energy consumption and
communication cost into the objective.
Particularly in edge environments, battery
life and data plans are critical constraints.
The scheduler could trade off time against
energy.

5. Real testbed experiments. Deploy the
scheduler on a physical or emulated testbed
with Raspberry Pi, Jetson Nano or
smartphone devices connected via Wi‑Fi
and cellular links. Measure real execution
times, network delays and energy
consumption.

6. Integration with Kubernetes HPA and
KubeEdge. Combine the ML scheduler with
container orchestration. For example, the
classifier could inform the HPA to spawn
pods on specific nodes based on predicted
workload distribution, while KubeEdge
could provide a platform for remote
deployment[2].

11 Conclusion
This work presents Cloud‑Assisted Resource
Allocation Using Machine Learning, a small‑scale
but complete prototype for cloud–edge task
allocation. By generating synthetic data, training a
decision‑tree classifier and deploying it in a master
scheduler, we demonstrate that machine learning can
improve both makespan and load balance relative to
a greedy baseline. The improvement is modest in
absolute terms (~3.2 % makespan reduction on a
fresh run) but significant for load balance,
preventing overload of the fastest worker and
distributing tasks across the available resources. The
approach is reproducible, interpretable and readily
integrable with container orchestration and
federated‑learning frameworks. Importantly, the
problem and solution map naturally to client
selection in federated learning: resource‑aware
scheduling of cloudlets parallels client–round
allocation, and could reduce time‑to‑accuracy and
straggler impact in FL. Future work will extend this
prototype to larger testbeds, richer models and real
federated‑learning workloads.

https://kubernetes.io/blog/2019/03/19/kubeedge-k8s-based-edge-intro/#:~:text=strong%20drive%20to%20build%20better,edge%20modules%20are%20open%20sourced

 Spectrum of Engineering Sciences
ISSN (e) 3007-3138 (p) 3007-312X

https://sesjournal.com | Hussain., 2025 | Page 163

12 Reproducibility Checklist
 Operating System: Linux (tested on

Ubuntu 20.04).
 Python version: 3.11.
 Packages: pandas (≥ 1.5), numpy (≥ 1.23),

scikit‑learn (≥ 1.2), joblib, matplotlib for plotting.
 Commit hash: Use the latest commit in the

repository https://github.com/sadaqatdev/fyp_updated
when replicating experiments.

 Random seeds: Fix random seed (e.g., 42) in
the seeder and training scripts for
reproducible data and model splits.

 Configuration files: seeder_data_template.csv
defines feature distributions; config.json (if
present) contains bandwidth and MIPS
settings.

 Commands: See §5.4 for the three
commands required to generate data, train
the model and run the scheduler.

 Hardware: Experiments can be replicated on
a single machine; for distributed
deployment, ensure consistent Python
environments across nodes.

References
[1] H. B. McMahan, E. Moore, D. Ramage,

S. Hampson and B. Agüera y Arcas,
“Communication‑Efficient Learning of
Deep Networks from Decentralized Data,”
Proc. AISTATS, 2017. The authors propose
federated learning, leaving training data on
devices and using iterative model averaging.
Their experiments demonstrate robustness
to unbalanced and non‑IID data and reduce
communication rounds by 10–100×
compared with synchronous stochastic
gradient descent[4].

[2] P. Kairouz et al., “Advances and Open roblems
in Federated Learning,” Foundations and
Trends in Machine Learning, vol. 4, no. 1,
pp. 1–210, 2021. This survey defines
federated learning, summarises
state‑of‑the‑art algorithms, and highlights
open challenges such as client selection,
straggler mitigation and systems
heterogeneity[5].

[3] D. J. Beutel, T. Topal, A. Mathur et al., “Flower:
A Friendly Federated Learning Research
Framework,” arXiv preprint
arXiv:2007.14390, 2020. Flower provides a
scalable research framework for federated
learning, supporting heterogeneous devices
and large‑scale experiments; the authors
report that Flower can conduct FL
experiments with up to 15 million clients[3].

[4] Kubernetes Documentation, “Horizontal od
Autoscaling,” 2025. The Horizontal od
Autoscaler is an API resource in the
Kubernetes autoscaling group that scales the
number of replicas of a deployment based
on CPU, memory or custom metrics[1]. The
stable autoscaling/v2 API supports scaling on
memory and custom metrics, and controllers
adjust the replica count to maintain target
utilisation[1].

[5] Kubernetes Blog, “KubeEdge, a Kubernetes
Native Edge Computing Framework,” 2019.
KubeEdge provides a Kubernetes‑compatible
edge computing solution with separate cloud
and edge core modules. The control plane
resides in the cloud, while the edge can
operate offline; the platform is lightweight,
containerised and supports heterogeneous
hardware[2]. KubeEdge enables
orchestration and management of edge
clusters akin to cloud Kubernetes[2].

[6] H. Wang, E. Deng, J. Li and C. Zhang, “Edge
Computing Resource Scheduling Method
Based on Container Elastic caling,” PeerJ
Computer Science, vol. 10, p. e2379, 2024.
The authors design a TE‑TCN load
prediction model and use a
reinforcement‑learning based container
scaling strategy to improve CPU utilisation
and reduce response time in edge
environments[8]. Their method leverages
temporal convolutional networks and
Markov decision processes to form a
predictive container scaling strategy[8].

Additional citations for other referenced works.
[1] Horizontal Pod Autoscaling | Kubernetes
https://kubernetes.io/docs/tasks/run-

application/horizontal-pod-autoscale/

https://arxiv.org/abs/1602.05629#:~:text=,to%20synchronized%20stochastic%20gradient%20descent
https://arxiv.org/abs/1912.04977#:~:text=,of%20open%20problems%20and%20challenges
https://arxiv.org/abs/2007.14390#:~:text=,for%20FL%20study%20and%20development
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/#:~:text=The%20Horizontal%20Pod%20Autoscaler%20is,autoscaling%2Fv1
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/#:~:text=The%20Horizontal%20Pod%20Autoscaler%20is,autoscaling%2Fv1
https://kubernetes.io/blog/2019/03/19/kubeedge-k8s-based-edge-intro/#:~:text=strong%20drive%20to%20build%20better,edge%20modules%20are%20open%20sourced
https://kubernetes.io/blog/2019/03/19/kubeedge-k8s-based-edge-intro/#:~:text=strong%20drive%20to%20build%20better,edge%20modules%20are%20open%20sourced
https://pmc.ncbi.nlm.nih.gov/articles/PMC11623203/
https://pmc.ncbi.nlm.nih.gov/articles/PMC11623203/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/#:~:text=The%20Horizontal%20Pod%20Autoscaler%20is,autoscaling%2Fv1
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/

 Spectrum of Engineering Sciences
ISSN (e) 3007-3138 (p) 3007-312X

https://sesjournal.com | Hussain., 2025 | Page 164

[2] [6] KubeEdge, a Kubernetes Native Edge
Computing Framework | Kubernetes

https://kubernetes.io/blog/2019/03/19/kubeedge-
k8s-based-edge-intro/

[3] [2007.14390] Flower: A Friendly Federated
Learning Research Framework

https://arxiv.org/abs/2007.14390
[4] [1602.05629] Communication-Efficient Learning

of Deep Networks from Decentralized Data
https://arxiv.org/abs/1602.05629

[5] [1912.04977] Advances and Open Problems in

Federated Learning
https://arxiv.org/abs/1912.04977
[7] [8] Edge computing resource scheduling method

based on container elastic scaling - PMC
https://pmc.ncbi.nlm.nih.gov/articles/PMC116232

03/

https://kubernetes.io/blog/2019/03/19/kubeedge-k8s-based-edge-intro/#:~:text=strong%20drive%20to%20build%20better,edge%20modules%20are%20open%20sourced
https://kubernetes.io/blog/2019/03/19/kubeedge-k8s-based-edge-intro/#:~:text=KubeEdge%20provides%20a%20containerized%20edge,new%20nodes%20and%20devices%20efficiently
https://kubernetes.io/blog/2019/03/19/kubeedge-k8s-based-edge-intro/
https://kubernetes.io/blog/2019/03/19/kubeedge-k8s-based-edge-intro/
https://arxiv.org/abs/2007.14390#:~:text=,for%20FL%20study%20and%20development
https://arxiv.org/abs/2007.14390
https://arxiv.org/abs/1602.05629#:~:text=,to%20synchronized%20stochastic%20gradient%20descent
https://arxiv.org/abs/1602.05629
https://arxiv.org/abs/1912.04977#:~:text=,of%20open%20problems%20and%20challenges
https://arxiv.org/abs/1912.04977
https://pmc.ncbi.nlm.nih.gov/articles/PMC11623203/
https://pmc.ncbi.nlm.nih.gov/articles/PMC11623203/
https://pmc.ncbi.nlm.nih.gov/articles/PMC11623203/
https://pmc.ncbi.nlm.nih.gov/articles/PMC11623203/

