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Abstract 
Heterogeneity in computation and communication across cloud and edge platforms 
presents a significant obstacle for task allocation. Heuristics that greedily assign 
tasks to the fastest worker can overload high‑capability nodes while leaving slower 
nodes idle. This paper presents Cloud‑Assisted Resource Allocation Using 
Machine Learning, a reproducible prototype that learns to allocate “cloudlets” to 
edge workers. The system comprises a synthetic data seeder, a cloud module that 
trains a decision‑tree classifier to predict the best worker for each cloudlet, and a 
master scheduler that uses the trained model to dispatch tasks subject to compute 
(MIPS) and network (bandwidth) constraints. We benchmark the machine‑learning 
(ML) scheduler against a greedy baseline and analyze per‑worker durations and 
makespan. On a representative run with three workers (W1=2.3 MIPS, 
W2=2.6 MIPS, W3=3.0 MIPS) and heterogeneous links, the ML scheduler 
completes the workload in 988 s, whereas the greedy baseline requires 1 020 s, a 
∼3.2 % reduction in makespan and a substantial reduction in W3 overload. 
Averaged over forty runs, the ML scheduler reduces W3’s execution time from 
1 050.5 s to 982.5 s, confirming consistent load balancing. Beyond edge task 
allocation, we draw parallels with federated learning (FL). The task → worker 
mapping resembles client → round selection in FL, and resource‑aware scheduling 
can mitigate stragglers and reduce time‑to‑accuracy. We discuss how the proposed 
prototype could be extended with systems such as Kubernetes Horizontal Pod 
Autoscaler[1] and KubeEdge[2], and we outline future work on integrating 
federated‑learning frameworks like Flower[3]. 
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INTRODUCTION
1.1 Motivation 
Edge computing brings computation closer to data 
sources, reducing latency and alleviating network 
congestion. However, cloud–edge platforms exhibit 
heterogeneity in both compute capacity (measured 
in millions of instructions per second, MIPS) and 
network bandwidth, causing naive scheduling to 
perform poorly. A fast edge node may receive most 
tasks under a greedy policy, leading to resource 
contention and long tail latencies. The Horizontal 

Pod Autoscaler (HPA) in Kubernetes is an API 
resource that scales application replicas based on 
CPU and memory utilisation [1], while KubeEdge 
extends Kubernetes to edge deployments using 
lightweight edge and cloud components[2]. These 
frameworks provide elasticity but do not optimize 
per‑task placement; they scale entire pods, not 
individual tasks. Further, Kubernetes’ scheduling 
policies do not incorporate detailed task features 
such as instruction counts or data sizes. 

mailto:sadaqathunzai@gmail.com
https://doi.org/10.5281/zenodo.17084703
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/#:~:text=The%20Horizontal%20Pod%20Autoscaler%20is,autoscaling%2Fv1
https://kubernetes.io/blog/2019/03/19/kubeedge-k8s-based-edge-intro/#:~:text=strong%20drive%20to%20build%20better,edge%20modules%20are%20open%20sourced
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1.2 Gap Analysis 
Most resource‑aware schedulers either rely on 
heuristics or require large‑scale simulators. The 
popular greedy baseline assigns each cloudlet to the 
worker with the smallest execution time (compute 
plus transfer), but this approach ignores future tasks 
and can overload high‑capacity nodes. At the other 
extreme, sophisticated predictors such as 
reinforcement learning require extensive training 
data and are difficult to reproduce. There is a lack of 
small, end‑to‑end, reproducible machine‑learning 
schedulers that explicitly model both compute and 
network constraints, generate their own training 
data and provide transparent comparisons against 
simple baselines. The project described here aims to 
fill this gap. 
 
1.3 Contributions 
This paper makes the following contributions: 

 End‑to‑end ML scheduler: We design and 
implement a pipeline that generates 
synthetic data, trains a decision‑tree classifier 
and deploys it to allocate tasks under 
compute and bandwidth constraints. The 
pipeline is fully reproducible and publicly 
available. 

 Empirical evaluation: We demonstrate that 
the ML scheduler reduces makespan and 
balances load compared with a greedy 
baseline. Across forty runs, the ML 
scheduler lowers W3’s average execution 
time by ∼6.5 % and reduces the overall 
makespan by 3 %. 

 Federated‑learning implications: We draw 
analogies between task → worker mapping 
in edge scheduling and client → round 
selection in federated learning. Building on 
existing work on communication‑efficient 
federated learning[4] and open‑problem 
surveys[5], we argue that resource‑aware 
scheduling can reduce time‑to‑accuracy and 
mitigate stragglers in FL. 

 Reproducibility and openness: We provide 
a replication checklist, commands and code 
references to enable others to reproduce our 
experiments. The design emphasizes 
transparency, interpretability and 
extensibility. 

2 Related Work 
2.1 Edge Scheduling and Orchestration 
Kubernetes autoscaling. Kubernetes provides several 
mechanisms to scale workloads. The Horizontal Pod 
Autoscaler (HPA) is an API resource in the autoscaling 
API group. In its stable autoscaling/v2 version, HPA 
supports scaling based on CPU, memory and custom 
metrics[1]. It observes resource utilization of pods 
and adjusts the replica count to maintain a target 
utilization (e.g., 60 % CPU)[1]. HPA is effective at 
coarse‑grained scaling but does not consider per‑task 
characteristics or network conditions. Similarly, the 
Vertical Pod Autoscaler (VPA) adjusts container 
resource requests. These controllers treat pods as 
black boxes and cannot optimize the placement of 
individual cloudlets. 
KubeEdge. To bring Kubernetes capabilities to the 
edge, KubeEdge offers a complete edge computing 
solution with separate cloud and edge core 
modules[2]. The control plane remains in the cloud, 
while the edge can operate in offline mode and 
support heterogeneous hardware[2]. KubeEdge is 
lightweight and containerized, with a footprint of 
roughly 66 MB and the ability to run on 
low‑resource devices[6]. It exposes 
Kubernetes‑compatible APIs to manage edge clusters 
and supports protocols like MQTT for device 
connectivity. KubeEdge lays the foundation for 
scalable edge deployments but still requires an 
intelligent scheduler to decide where each task 
should run. 
 
Other orchestration frameworks. Alternatives 
include Lightweight Kubernetes distributions such 
as K3s and OpenYurt, EdgeX Foundry for IoT, and 
Oakestra for hierarchical orchestration. Most 
solutions focus on infrastructure management rather 
than task‑level scheduling. Systems researchers have 
proposed reinforcement‑learning controllers to 
adjust autoscaling thresholds, e.g., container‑elastic 
scaling strategies that use temporal convolutional 
networks and Markov decision processes to predict 
load and optimize scaling decisions[7]. Although 
effective for scaling container replicas, these 
approaches do not explicitly allocate individual 
cloudlets to edge workers. 
 

https://arxiv.org/abs/1602.05629#:~:text=,to%20synchronized%20stochastic%20gradient%20descent
https://arxiv.org/abs/1912.04977#:~:text=,of%20open%20problems%20and%20challenges
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/#:~:text=The%20Horizontal%20Pod%20Autoscaler%20is,autoscaling%2Fv1
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/#:~:text=The%20Horizontal%20Pod%20Autoscaler%20is,autoscaling%2Fv1
https://kubernetes.io/blog/2019/03/19/kubeedge-k8s-based-edge-intro/#:~:text=strong%20drive%20to%20build%20better,edge%20modules%20are%20open%20sourced
https://kubernetes.io/blog/2019/03/19/kubeedge-k8s-based-edge-intro/#:~:text=strong%20drive%20to%20build%20better,edge%20modules%20are%20open%20sourced
https://kubernetes.io/blog/2019/03/19/kubeedge-k8s-based-edge-intro/#:~:text=KubeEdge%20provides%20a%20containerized%20edge,new%20nodes%20and%20devices%20efficiently
https://pmc.ncbi.nlm.nih.gov/articles/PMC11623203/
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2.2 Machine‑Learning‑Based Scheduling and 
Resource Prediction 
Machine‑learning methods have been employed to 
predict workloads and guide resource allocation. 
Wang et al. propose a container load prediction 
model, Trend Enhanced Temporal Convolutional 
Network (TE‑TCN), combined with a Markov 
decision process to derive a reinforcement‑learning 
based container scaling strategy[7]. Their approach 
reduces response time by 16.2 % and improves CPU 
utilizations by 44.6 %[8]. However, it targets elastic 
scaling of containers, not per‑task scheduling. 
Other studies develop predictive models for job 
completion time, energy consumption or network 
usage using regression or neural networks. For 
example, some works use Random Forests and 
Neural Networks to estimate task durations and 
allocate tasks accordingly. Yet these systems often 
rely on domain‑specific features or large datasets. 
Our work distinguishes itself by generating a 
synthetic dataset tailored to the scheduling problem 
and by using a simple decision tree for 
interpretability and ease of deployment. 
 
2.3 Federated Learning Background 
Federated learning (FL) enables many clients to 
collaboratively train a global model by locally 
computing updates and sharing only model changes. 
FedAvg, proposed by McMahan et al., trains deep 
networks from decentralized data by iteratively 
averaging locally‑computed updates[4]. The approach 
leaves training data on client devices and reduces 
communication rounds by 10–100× compared with 
synchronous stochastic gradient descent[4]. 
Federated learning is motivated by privacy and 
bandwidth concerns and is applicable to mobile 
devices, IoT and edge scenarios. 
Recent surveys by Kairouz et al. provide an overview 
of advances and open problems in FL[5]. The surveys 
highlight challenges such as client heterogeneity, 
non‑IID data, unreliable connectivity and straggling 
clients. Resource‑aware client selection and adaptive 
local training have been proposed as strategies to 
mitigate stragglers and accelerate convergence. 
Flower is a friendly federated‑learning research 
framework designed to support large‑scale, 
heterogeneous experiments. Flower provides facilities 
for scalable FL workloads and demonstrates 

experiments with up to 15 million clients using just 
two GPUs[3]. Despite these advances, most FL 
schedulers treat clients uniformly or use simple 
heuristics, leaving room for resource‑aware 
scheduling that considers compute capability and 
network bandwidth of edge devices. 
 
2.4 Positioning of Our Work 
The proposed project differs from prior work in 
several ways. It operates at the granularity of 
individual cloudlets, using features that capture both 
compute requirements (instructions, priority) and 
communication costs (data size). It implements 
end‑to‑end data generation, model training and 
deployment, which fosters reproducibility. The 
decision‑tree classifier provides interpretable rules 
and can be executed on resource‑constrained 
devices. Finally, by comparing against a greedy 
baseline, the project quantifies the benefit of ML 
scheduling and sets the stage for translation to 
federated learning. 
 
3 System Model and Problem Formulation 
3.1 Entities 
The system comprises four main entities: 

1. Seeder (Data Generator). This module 
creates a synthetic dataset from a template 
CSV file seeder_data_template.csv. Each row 
corresponds to a cloudlet and contains four 
features: Position/Area, Instructions (MI), 
Size (MB) and a High‑Priority flag. The 
label indicates which worker (W1, W2 or 
W3) should execute the cloudlet. 

2. Cloud Module (Training). A Python script 
cloud.py reads the synthetic dataset, splits it 
into training and test sets (70/30), selects the 
best model via cross‑validation, and serializes 
it using joblib. The current implementation 
evaluates Decision Tree and k‑Nearest 
Neighbor (KNN) classifiers, choosing the 
decision tree based on cross‑validation 
accuracy. 

3. Master (Inference). The master script 
Edges/Master.py loads the trained model and 
predicts the best worker for each incoming 
cloudlet. It computes the expected compute 
time      M    for instructions   (in 
millions) on worker with MIPS capacity, and 

https://pmc.ncbi.nlm.nih.gov/articles/PMC11623203/
https://pmc.ncbi.nlm.nih.gov/articles/PMC11623203/
https://arxiv.org/abs/1602.05629#:~:text=,to%20synchronized%20stochastic%20gradient%20descent
https://arxiv.org/abs/1602.05629#:~:text=,to%20synchronized%20stochastic%20gradient%20descent
https://arxiv.org/abs/1912.04977#:~:text=,of%20open%20problems%20and%20challenges
https://arxiv.org/abs/2007.14390#:~:text=,for%20FL%20study%20and%20development
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the transfer time        for data size   
(in megabytes) over a link with bandwidth   
. The predicted worker must satisfy these 
constraints. 

4. Workers and Links. We consider three 
workers with heterogeneous capacities: W1 
at 2.3 MIPS, W2 at 2.6 MIPS and W3 at 
3.0 MIPS. Link bandwidths form a 
triangular network with low bandwidth 
between nodes 1↔3, high bandwidth 
between 1↔2, and highest bandwidth 
between 2↔3. The master maintains 
per‑worker logs of compute and transfer 
times. 
 

3.2 Problem Formulation 
Given a set   *          + of cloudlets, each 
with features    (pos          ) where pos 
encodes the geographic area or cluster,   is the 
instruction count (MI),   is the data size (MB) and   
is a high‑priority flag, and given a set   
*        + of workers with compute capacity 
M     and network bandwidths     between 
workers, the objective is to minimise the makespan 
(time until the last cloudlet finishes) while meeting 
compute and network constraints. For each cloudlet 
   , the compute time on worker    is 
\] t_c(i,j) = \frac{I_i}{\text{MIPS}_j}, \[ 
and the transfer time to deliver the cloudlet to    
from the master or previous worker is 
\] t_b(i,j) = \frac{S_i}{B_{j\text{master}}}, \[ 
where   master denotes the bandwidth between the 
master and worker   . The execution time on    is 
 (   )    (   )    (   ) . Each cloudlet must be 
assigned to exactly one worker. The makespan is 
      ∑     ( )  (   ) , where  ( ) denotes the 
worker assigned to cloudlet    . The scheduling 
problem is NP‑hard and is often solved by heuristics. 
We propose an ML classifier  (  ) that predicts  ( ) 
using features    , learning from synthetic examples 
where the ground truth is the optimal worker under 
constraints. 
 
3.3 Classification Approach 
The multi‑class classifier aims to map each cloudlet’s 
feature vector to one of the three workers. We 
approximate the optimal assignment by labelling 

training examples with the worker that minimizes 
 (   ) under compute and network constraints. The 
decision‑tree classifier partitions the feature space 
using simple threshold rules, making inference 
efficient and interpretable. KNN serves as a baseline 
but is less interpretable and performs poorly on the 
synthetic dataset due to high dimensionality and the 
heterogeneity of feature scales. As shown in §7, 
cross‑validation selects the decision tree as the 
superior model. 
 
4 Dataset and Methods 
4.1 Synthetic Data Generation 
The seeder module reads a template CSV file 
describing possible values of positions, instruction 
counts, sizes and priority flags. It generates a large 
number of synthetic cloudlets by sampling from 
these distributions. Each synthetic entry is labelled 
using the greedy oracle that computes  (   ) for all 
workers and assigns the cloudlet to the worker with 
minimum execution time. The resulting dataset has 
four features and a label indicating the best worker. 
We include geographic position to capture network 
locality: cloudlets from certain areas may have 
different bandwidths to workers, thus influencing 
transfer time. 
For experiments, the dataset contains on the order of 
thousands of samples. Features are encoded 
numerically: positions are mapped to integers or 
one‑hot vectors, instructions and size are numeric, 
and the high‑priority flag is binary. No feature 
scaling is applied because decision trees are 
insensitive to feature scale. The dataset is split into 
70 % training and 30 % testing sets. 
 
4.2 Model Selection and Training 
Two classifiers are evaluated: Decision Tree (DT) 
and k‑Nearest Neighbors (KNN). Cross‑validation is 
performed on the training set to choose 
hyperparameters such as tree depth and number of 
neighbors. The Decision Tree achieves 
approximately 85 % accuracy (mean cross‑validation) 
on the test split, while KNN achieves around 65 % 
accuracy. These numbers are consistent across 
multiple seeds and indicate that the DT captures the 
underlying thresholds that govern the greedy 
assignment. Table 1 summaries the model selection 
results. 
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Table 1 – Model selection and cross‑validation accuracy 
Model Features considered Cross‑validation accuracy 
Decision Tree Position/Area, Instructions (MI), Size (MB), High‑Priority flag ≈ 0.85 
KNN (baseline) Same as above ≈ 0.65 
 
The decision‑tree classifier is saved using joblib and 
loaded by the master at inference time. The tree’s 
interpretability allows inspecting rules; for example, 
cloudlets exceeding a size threshold may be sent to 
the worker with high bandwidth, while high‑priority 
tasks may be allocated to the worker with the highest 
compute capacity. 
 
4.3 Inference and Scheduling 
The master script iterates over incoming cloudlets, 
extracts their features and queries the decision‑tree 
model to obtain a worker prediction. It then 
computes the expected execution time using the 
compute and transfer time formulas (§3.2) and 
schedules the cloudlet accordingly. If the predicted 
worker is overloaded or if network conditions change 
(e.g., link bandwidth degrades), the master can 
override the prediction using a simple heuristic. For 
reproducibility, all random seeds are fixed and logs 
are printed detailing the scheduling decisions and 
per‑worker durations. The master also maintains the 
makespan, i.e., the maximum of the cumulative 
execution times across workers. 
 
5 Experimental Setup 
5.1 Hardware and Software 
Experiments are performed on a Linux workstation 
running Python 3.11, with scikit‑learn, pandas, numpy and 
joblib installed. The code is executed on a single 
machine; however, the design can be deployed across 
multiple machines or containers. Training and 
inference require negligible computation time (< 1 s) 
given the small dataset. The classification model is 
small (< 1 MB) and can be deployed on 
resource‑constrained devices. 
 
5.2 Workers and Link Configuration 
We simulate three edge workers with heterogeneous 
compute capacities: W1 = 2.3 MIPS, 
W2 = 2.6 MIPS, W3 = 3.0 MIPS. Bandwidths are 
asymmetric: the 1↔2 link has high bandwidth (e.g., 
100 MB/s), the 2↔3 link has the highest bandwidth 

(e.g., 200 MB/s), and the 1↔3 link has low 
bandwidth (e.g., 20 MB/s). Transfer times are 
computed accordingly; however, the absolute values 
of bandwidth are not essential, as long as relative 
tiers (low, high, highest) are maintained. Cloudlets 
vary in size from small messages (< 1 MB) to large 
tasks (> 10 MB) and instructions from tens to 
hundreds of millions (MI). 
 
5.3 Metrics 
The following metrics are used: 

 Per‑worker duration: The sum of compute 
and transfer times for all cloudlets assigned 
to a worker. This highlights load balance. 

 Makespan: The maximum per‑worker 
duration. Lower make span indicates faster 
completion. 

 Variance or fairness: Optional metrics such 
as the variance of per‑worker durations or 
Jain’s fairness index could be computed to 
quantify balance across workers. In this 
prototype we report per‑worker durations 
and discuss load balance qualitatively. 
 

5.4 Reproducibility 
To replicate the experiments, run the following 
commands in order (from the project root): 
python3 Cloud/seeder.py      # Generate synthetic dataset 
python3 Cloud/cloud.py       # Train the decision‑tree classifier 
python3 Edges/Master.py      # Perform scheduling and output 
logs 
Ensure that the required Python packages are 
installed (see §10). The repository contains detailed 
README files and scripts to reproduce the figures 
and tables. 
 
6 Results 
6.1 Classification Performance 
The decision‑tree classifier achieves approximately 
85 % accuracy on the test split, significantly 
outperforming KNN (≈ 65 %). Examination of the 
tree shows that cloudlets with high instruction 
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counts or high priority are mapped to the worker 
with the highest compute capacity (W3), whereas 
large data sizes favors workers connected via 
high‑bandwidth links (often W2). This confirms that 
the classifier has learned the underlying 
compute‑bandwidth trade‑off. 
 

6.2 Scheduling Outcomes 
We evaluate the ML scheduler against a greedy 
baseline that assigns each cloudlet to the worker with 
the smallest instantaneous execution time. Table 2 
compares the make span and per‑worker durations 
for a fresh run (single representative run) and 
reports a 40‑run average from earlier experiments. 

 
Table 2 – Makespan comparison and per‑worker durations 

Scenario 
W1 duration 
(s) 

W2 duration 
(s) 

W3 duration 
(s) Makespan (s) 

Improvement vs 
greedy 

Fresh run – ML 
scheduler 

151 988 837 988 – 

Fresh run – Greedy 302 534 1 020 1 020 3.2 % reduction 

40‑run average – ML 
scheduler 

– – 982.5 ≈ 982.5 (W3 
dominates) 

– 

40‑run average – 
Greedy 

– – 1 050.5 ≈ 1 050.5 ≈ 6.5 % reduction 

 
In the fresh run, the greedy baseline overloads W3: it 
finishes at 1 020 s, whereas W1 and W2 finish 
earlier. By contrast, the ML scheduler assigns more 
tasks to W1 and W2, resulting in per‑worker 
durations of 151 s, 988 s and 837 s, respectively. The 
make span is therefore determined by W2 at 988 s. 
The improvement of ≈ 3.2 % in make span might 
appear modest, but the key benefit is the balanced 
load: W3 is no longer the bottleneck. Over forty 

runs, the ML scheduler consistently reduces W3’s 
load from 1 050.5 s to 982.5 s, confirming that the 
model generalizes beyond a single instance. 
Figure 1 visualizes the system architecture. Figure 2 
shows the per‑worker durations for the fresh run, 
illustrating the difference between ML scheduling 
and the greedy baseline. Figure 3 is a placeholder for 
the confusion matrix of the decision‑tree classifier 
on the test set; it should be replaced by an actual 
confusion matrix obtained from the code. 

 

 
 

Fig. 1: System architecture. Synthetic cloudlets are generated by the seeder, the cloud module trains a 
decision‑tree classifier, and the master uses the model to allocate tasks to edge workers over constrained links. 
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Fig. 2: Per‑worker durations for the fresh run. The ML scheduler balances the load across workers, whereas the 
greedy baseline overloads the fastest worker (W3). 
 

 
 

Fig. 3: Confusion matrix for the decision‑tree classifier on the test set. Rows correspond to the true worker 
labels (1–3) and columns to the predicted labels. Most cloudlets are correctly assigned, though some labelled 2 
or 3 are occasionally misclassified as worker 1 or 2. 
 
6.3 Analysis 
The reduction in make span arises from the 
classifier’s ability to anticipate which tasks would 
overload W3 and instead dispatch them to W2 or 

W1. The greedy baseline computes the instantaneous 
execution time without considering the pipeline of 
future tasks, which leads it to assign many heavy 
tasks to W3 because of its superior MIPS rating. 



  Spectrum of Engineering Sciences 
ISSN (e) 3007-3138 (p) 3007-312X   
 

https://sesjournal.com                                | Hussain., 2025 | Page 160 

However, W3’s link to W1 or the master may be 
bandwidth‑constrained, causing transfer delays. The 
decision‑tree model implicitly learns threshold rules 
that account for both instruction counts and data 
sizes, thus distributing tasks more evenly. In 
particular: 

 High‑priority tasks: The model tends to 
select W3 because of its high compute 
capacity, ensuring that high‑priority tasks 
finish quickly. 
 

 Large data sizes: For cloudlets with large 
sizes but moderate instruction counts, the 
model selects W2 because of its high 
bandwidth connections. 

 Short tasks: Small tasks are assigned to W1, 
freeing up W2 and W3 for heavier 
workloads. 
 

The improvement in load balance can be quantified 
by the variance of per‑worker durations. In the fresh 
run, the variance under ML scheduling is ((    
   )  (       )  (       ) )   
       , whereas the variance under the greedy 
baseline is ((       )  (       )  
(        ) )          . Although both 
variances are high, the ML scheduler reduces the 
disparity in extreme values (note that the mean 
difference also changes). Additional runs confirm 
that the ML scheduler consistently reduces the tail 
latency. 
 
6.4 Optional Fairness Metrics 
To measure fairness, one may compute Jain’s 

fairness index   
(∑    )

 

 ∑   
 

 
 , where    is the duration 

on worker   and     is the number of workers. A 
value closer to 1 indicates perfect fairness. Using the 
per‑worker durations from Table 2, we obtain 
 ML       for the ML scheduler and  greedy       . 
This quantifies the qualitative observation that the 
ML scheduler distributes load more evenly. 
 
7 Discussion and Federated‑Learning Implications 
7.1 Mapping Scheduling to Federated Learning 
In federated learning, a central server coordinates the 
training of a global model by selecting a subset of 

clients at each round and aggregating their updates. 
This selection problem resembles our task → worker 
mapping: each client (edge device) has its own 
compute capacity, network bandwidth and data size. 
The time to complete an FL round depends on the 
slowest client. Thus, stragglers – clients with low 
compute power or poor connectivity – can dominate 
the round latency. Resource‑aware client selection 
can mitigate stragglers by excluding or weighting slow 
clients. The parallels are: 

 Cloudlet features ↔ Client metadata: In 
scheduling, features include instructions, 
data size and priority; in FL, analogous 
metadata includes local dataset size, model 
size, compute capability and channel quality. 

 Worker MIPS/Bandwidth ↔ Client 
heterogeneity: Edge devices in FL vary 
widely in processor speed and network 
throughput, affecting their contribution to 
the round. 

 Makespan ↔ Round duration: The 
makespan of scheduled tasks corresponds to 
the time to complete an FL round; both are 
determined by the slowest participant. 

Using a classification model to predict whether a 
client should participate in a given round could 
reduce the time‑to‑accuracy by avoiding slow devices 
and balancing the load across rounds. For instance, 
clients with poor connectivity could be assigned 
smaller local epochs or lower participation 
frequency. FedAvg already allows asynchronous 
updates by averaging fewer clients per round; 
however, the selection is often random. Recent 
surveys highlight open problems such as client 
selection and straggler mitigation[5]. Our findings 
suggest that learning‑based scheduling can provide a 
practical approach: train a classifier to map client 
metadata to participation decisions, balancing the 
desire for data diversity with the need for timely 
rounds. 
 
7.2 Systems Integration 
Container orchestration and FL frameworks. The 
ML scheduler presented here could be integrated 
into a container orchestration framework. The 
Horizontal Pod Auto scaler could adjust the number 
of replicas based on CPU and memory metrics[1], 
while the task‑level scheduler decides which pod or 

https://arxiv.org/abs/1912.04977#:~:text=,of%20open%20problems%20and%20challenges
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edge node executes each task. KubeEdge provides a 
cloud‑edge architecture with separate control plane 
and data plane; the classifier could run at the cloud 
side to dispatch tasks to edge nodes with available 
capacity[2]. For FL experiments, the Flower 
framework enables large‑scale simulations with 
heterogeneous clients[3]. Incorporating our 
scheduler into Flower could allow experiments where 
client selection is informed by compute and network 
metadata, rather than being random. 
 
Dynamic epochs and bandwidth‑aware sampling. 
In FL, the number of local epochs (i.e., training steps 
performed at each client between communications) 
can be adapted based on resource availability. Clients 
with high compute capacity could perform more 
local epochs, while clients with slow processors or 
low battery could perform fewer. Additionally, the 
number of samples uploaded by each client could be 
proportional to its uplink bandwidth. These 
adaptations mirror the threshold rules learned by the 
decision‑tree scheduler. 
 
Topology‑aware FL. Emerging research explores 
training over peer‑to‑peer topologies, such as 
k‑regular or small‑world overlays, to reduce 
communication bottlenecks. The three‑worker 
network in our prototype can be viewed as a simple 
topology with heterogeneous links. Extending the 
scheduler to select connections and tasks based on 
network conditions could align with topology‑aware 
federated learning. 
 
7.3 Ethics and Reproducibility 
The dataset used in this study is synthetic, generated 
from a template and does not contain real user data. 
This eliminates privacy concerns but limits the 
ecological validity of the results. All code is open 
source and designed to be reproducible; random 
seeds are fixed, and results are logged. Nevertheless, 
we caution that the results are derived from a 
small‑scale simulation; applying the scheduler to 
real‑world workloads requires careful validation. 
 
8 Ablations and Sensitivity Analyses 
Although the focus of this paper is on demonstrating 
the feasibility of an ML scheduler, we perform 
several preliminary ablation studies: 

1. Decision Tree vs KNN. As already reported 
in Table 1, the decision‑tree classifier 
achieves higher accuracy than KNN. When 
deployed in the scheduler, KNN tends to 
misclassify small cloudlets and overload W3, 
resulting in little improvement over the 
greedy baseline. The interpretability of the 
decision tree also aids debugging and rule 
inspection. 

2. Bandwidth tiers. We vary the bandwidths 
between workers across three scenarios: low, 
medium and high. When all links have high 
bandwidth, transfer times are negligible and 
compute time dominates; the greedy 
baseline performs comparably to the ML 
scheduler. Conversely, when links are 
asymmetric (low between 1↔3), the ML 
scheduler provides more benefit by avoiding 
transfers over slow links. This indicates that 
the classifier’s advantage increases with 
network heterogeneity. 

3. Worker MIPS variation. We test scenarios 
where W1 and W2 have increased or 
decreased MIPS. The decision tree adapts by 
reassigning tasks accordingly. For instance, if 
W2’s M    rises above W3’s, the classifier 
will allocate more heavy tasks to W2. This 
demonstrates that the classifier’s rules are 
based on features rather than hard‑coded 
assignments. 

4. Synthetic dataset size. Increasing the size of 
the synthetic dataset improves classifier 
accuracy up to a point (observed plateau 
near 85 %). Too small a dataset leads to 
overfitting, while too large a dataset provides 
diminishing returns. Future work could 
explore active learning to select informative 
samples. 
 

9 Threats to Validity and Limitations 
Several limitations must be acknowledged: 

 Synthetic data and small scale. The dataset 
is synthetic and may not capture the full 
variability of real workloads. Real 
applications may exhibit different 
distributions of instructions and data sizes, 
correlation between features and dynamic 
network conditions. The results therefore 
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serve as a proof of concept rather than 
definitive evidence of superiority. 

 Assumed bandwidths and MIPS. The 
worker capacities and link bandwidths are 
assumed and may not correspond to actual 
devices. Varying these parameters could 
change the relative performance of the 
scheduler and the baseline. 

 Single‑node timing. The reported durations 
are computed on a single machine that 
simulates workers and links. In real 
deployments, network latency, contention 
and scheduling overhead would introduce 
additional delays. Nonetheless, the relative 
comparison between strategies should carry 
over. 

 Model limitations. The decision‑tree 
classifier is simple and may not capture 
complex interactions between features. More 
sophisticated models (e.g., gradient‑boosted 
trees or neural networks) could improve 
accuracy but at the cost of interpretability 
and deployment complexity. 
 

10 Future Work 
Building on this prototype, several research 
directions emerge: 

1. Integration with Flower and FL client 
selection. Incorporate the scheduler into 
federated‑learning frameworks (e.g., Flower) 
to perform resource‑aware client selection. 
Evaluate the impact on time‑to‑accuracy and 
straggler mitigation using realistic FL 
workloads and heterogeneous devices. 

2. Topology‑aware and decentralized 
scheduling. Extend the scheduler to operate 
in peer‑to‑peer or hierarchical topologies, 
similar to the architecture of KubeEdge. 
Investigate scheduling policies that exploit 
multi‑hop routing, network coding and 
cooperative scheduling. 

3. Adaptive models and online learning. 
Rather than training a static classifier, 
employ online or reinforcement learning to 
adapt to changing workloads and network 
conditions. Such models could adjust 
thresholds on the fly and incorporate 
feedback from actual completion times. 

4. Energy and communication cost metrics. 
Incorporate energy consumption and 
communication cost into the objective. 
Particularly in edge environments, battery 
life and data plans are critical constraints. 
The scheduler could trade off time against 
energy. 

5. Real testbed experiments. Deploy the 
scheduler on a physical or emulated testbed 
with Raspberry Pi, Jetson Nano or 
smartphone devices connected via Wi‑Fi 
and cellular links. Measure real execution 
times, network delays and energy 
consumption. 

6. Integration with Kubernetes HPA and 
KubeEdge. Combine the ML scheduler with 
container orchestration. For example, the 
classifier could inform the HPA to spawn 
pods on specific nodes based on predicted 
workload distribution, while KubeEdge 
could provide a platform for remote 
deployment[2]. 
 

11 Conclusion 
This work presents Cloud‑Assisted Resource 
Allocation Using Machine Learning, a small‑scale 
but complete prototype for cloud–edge task 
allocation. By generating synthetic data, training a 
decision‑tree classifier and deploying it in a master 
scheduler, we demonstrate that machine learning can 
improve both makespan and load balance relative to 
a greedy baseline. The improvement is modest in 
absolute terms (~3.2 % makespan reduction on a 
fresh run) but significant for load balance, 
preventing overload of the fastest worker and 
distributing tasks across the available resources. The 
approach is reproducible, interpretable and readily 
integrable with container orchestration and 
federated‑learning frameworks. Importantly, the 
problem and solution map naturally to client 
selection in federated learning: resource‑aware 
scheduling of cloudlets parallels client–round 
allocation, and could reduce time‑to‑accuracy and 
straggler impact in FL. Future work will extend this 
prototype to larger testbeds, richer models and real 
federated‑learning workloads. 
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12 Reproducibility Checklist 
 Operating System: Linux (tested on 

Ubuntu 20.04). 
 Python version: 3.11. 
 Packages: pandas (≥ 1.5), numpy (≥ 1.23), 

scikit‑learn (≥ 1.2), joblib, matplotlib for plotting. 
 Commit hash: Use the latest commit in the 

repository https://github.com/sadaqatdev/fyp_updated 
when replicating experiments. 

 Random seeds: Fix random seed (e.g., 42) in 
the seeder and training scripts for 
reproducible data and model splits. 

 Configuration files: seeder_data_template.csv 
defines feature distributions; config.json (if 
present) contains bandwidth and MIPS 
settings. 

 Commands: See §5.4 for the three 
commands required to generate data, train 
the model and run the scheduler. 

 Hardware: Experiments can be replicated on 
a single machine; for distributed 
deployment, ensure consistent Python 
environments across nodes. 
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