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Abstract
This research explores the application of machine learning techniques in
classifying defective and non-defective products within a quality control process.
Two models, Linear Discriminant Analysis (LDA) and a Voting Classifier, were
evaluated for their performance in identifying defective items. The study utilized a
wine quality dataset, where the 'quality' attribute was binarized into defective and
non-defective classes. The models were assessed based on their classification
accuracy, precision, recall, and other evaluation metrics. The LDA model
achieved a test set accuracy of 72.71%, with balanced precision and recall values
for both classes. It demonstrated a precision of 0.68 and a recall of 0.74 for the
non-defective class (Class 0) and a precision of 0.78 and a recall of 0.72 for the
defective class (Class 1). These results highlight the model’s ability to handle the
classification task with reasonable accuracy and consistency. In comparison, the
Voting Classifier significantly outperformed LDA on the test set, achieving an
accuracy of 81.04%. It showed a higher precision (0.79) and recall (0.77) for the
non-defective class and an impressive precision (0.82) and recall (0.84) for the
defective class. These results underline the robustness of the Voting Classifier in
handling complex classification tasks with improved reliability and performance.
The findings indicate that while LDA provides baseline performance, the Voting
Classifier demonstrates superior capabilities in defect detection, making it a better
candidate for quality control applications. This study emphasizes the importance
of model selection in optimizing testing outcomes for industrial processes.

Keywords Key words: Defective
Classification, Machine
Learning, Linear Discriminant
Analysis (LDA), Voting
Classifier.

Article History
Received on 08 July 2025
Accepted on 25 July 2025
Published on 16 August 2025

Copyright @Author
Corresponding Author: *
Shakir Ullah

INTRODUCTION

In the modern manufacturing landscape,
ensuring product quality is paramount to
maintaining competitive advantage and
customer satisfaction. An integral part of this
process is the classification of defective and
non-defective items during quality control, a

task traditionally reliant on manual inspection
or rule-based systems. However, such methods
are often labor-intensive, time-consuming, and
prone to human error, necessitating the
adoption of automated, data-driven
approaches.
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Machine learning techniques have emerged as
powerful tools for solving classification
problems in quality control processes. By
leveraging historical data, these models can
identify patterns and make accurate
predictions, offering a scalable and efficient
solution for defect detection. Among these
techniques, Linear Discriminant Analysis
(LDA) has been widely used due to its
simplicity and effectiveness in handling
linearly separable data. However, more
advanced ensemble methods, such as the
Voting Classifier, have shown potential to
outperform traditional models by combining
the strengths of multiple algorithms.

This research investigates the use of LDA and
a Voting Classifier to classify products as
defective or non-defective. Using the wine
quality dataset as a case study, the 'quality'
attribute is binarized into two classes, allowing
for a clear and practical demonstration of these
models.

Objectives:
The primary objectives of this study are:

1. To apply LDA and Voting Classifier
models for classifying defective and
non-defective products in a quality
control process.

2. To evaluate and compare the
performance of both models using
metrics such as accuracy, precision,
recall, and F1-score on the test set.

3. To highlight the strengths and
limitations of LDA and ensemble
methods like the Voting Classifier in
defect detection scenarios.

4. To provide insights and
recommendations for selecting
machine learning models for quality
control applications.

The findings reveal that while LDA provides a
baseline for defect detection with moderate
performance, the Voting Classifier achieves
significantly higher accuracy and improved
classification metrics, particularly for defective
items. These results underscore the importance
of selecting robust machine learning models in
quality control applications, where accurate
defect identification can directly impact
operational efficiency and product reliability.

This paper aims to provide a comprehensive
analysis of these two models, highlighting their
strengths and limitations in a practical quality
control scenario. The insights from this
research contribute to the growing body of
knowledge in the application of machine
learning for industrial quality assurance,
offering guidance for practitioners and
researchers alike.

2.Literature Review

Machine learning has become a cornerstone of
modern quality control processes, offering
automated, efficient, and reliable solutions for
defect detection and classification. Over the
years, numerous studies have explored the
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application of machine learning models in
quality assurance, highlighting their ability to
enhance manufacturing efficiency and reduce
human error.

Linear Discriminant Analysis (LDA), as one of
the earliest statistical methods used for
classification, has been extensively applied in
various domains, including quality control.
Fisher (1936) first introduced LDA for solving
binary classification problems, and since then,
it has become a popular choice for tasks
involving linearly separable data. In the
context of industrial applications, Kumar et al.
(2015) utilized LDA to classify defective
products in a manufacturing line and reported
moderate accuracy, particularly when the
dataset exhibited minimal noise. However,
studies like those of Balakrishnama and
Ganapathiraju (1998) emphasize that while
LDA is computationally efficient and
interpretable, it struggles with non-linear
relationships and imbalanced datasets, often
leading to suboptimal performance in complex
quality control scenarios.

Ensemble learning methods, such as the
Voting Classifier, have gained traction for
their ability to combine the strengths of
multiple base models. Dietterich (2000)
demonstrated the effectiveness of ensemble
methods in reducing overfitting and improving
classification accuracy. Recent studies, such as
Goyal et al. (2020), highlighted that ensemble
techniques like Random Forest and Gradient
Boosting consistently outperformed single
classifiers in defect detection tasks. By

aggregating predictions from multiple models,
ensemble methods can capture intricate
patterns and handle noisy or imbalanced
datasets, making them ideal for real-world
quality control problems.

The Voting Classifier, as an ensemble method,
has been specifically noted for its adaptability
in industrial settings. Studies by Zhang et al.
(2021) and Shukla et al. (2022) demonstrated
that Voting Classifiers achieved higher
accuracy and reliability when compared to
traditional methods like LDA and Logistic
Regression. These classifiers effectively
integrate predictions from multiple algorithms,
such as Support Vector Machines, Decision
Trees, and K-Nearest Neighbors, resulting in a
balanced trade-off between bias and variance.

Other machine learning techniques, such as
Support Vector Machines (SVMs) and Neural
Networks, have also been explored in defect
classification. Sharma et al. (2019) applied
SVMs to classify defective products and
achieved high accuracy but noted that SVMs
require careful tuning of hyperparameters and
kernel selection. Similarly, Neural Networks
have shown promise in defect detection but
often require large datasets and significant
computational resources, as highlighted by
Kuo and Mao (2020).

Hybrid models have emerged as a recent trend
in defect detection, combining traditional
statistical methods like LDA with advanced
machine learning techniques. Studies by Yu et
al. (2021) demonstrated that hybrid models
not only improve classification accuracy but
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also provide enhanced interpretability, making
them suitable for industrial practitioners who
need both reliable performance and actionable
insights.

Despite these advancements, challenges
remain. For instance, high-dimensional data
can lead to overfitting in ensemble models,
and imbalanced datasets may bias predict
toward the majority class. Addressing these
issues requires careful preprocessing, feature
selection, and evaluation using comprehensive
metrics beyond accuracy, such as precision,
recall, and F1-score.

This study builds on the existing body of work
by comparing the performance of LDA and a
Voting Classifier in the context of defect
detection. Using a real-world dataset, the study
aims to evaluate their practical applicability
and limitations, providing actionable insights
for researchers and practitioners in the field of
quality control.

3.Methodology

The methodology outlines the systematic
approach used for classifying defective and
non-defective products. The study focuses on
comparing the performance of Linear
Discriminant Analysis (LDA) and a Voting
Classifier ensemble.

3.1Dataset and Preprocessing

The dataset used is the wine quality
dataset(red), which contains physicochemical
properties of wine samples. Target variable

quality, binarized as defective (0) (quality < 6)
non-defective (1) (quality ≥ 6)

Preprocessing Steps:

i) Data Cleaning: The dataset was
checked for missing or invalid values.
No missing data was found.

ii) Feature Scaling: Standardization of all
features was applied using z-score
normalization.

iii) Train-Test Split: The dataset was split
into training (70%) and testing (30%)
sets using stratified sampling to
maintain the class distribution.

Here's the Methodology section revised with
detailed explanations of the models, inclusion
of mathematical foundations, and
comprehensive implementation steps.

3.2Models

3.2.1. Linear Discriminant Analysis (LDA)

LDA seeks to find a linear combination of
features that separates two or more classes. The
objective is to maximize the ratio of between-
class variance to within-class variance, defined
as:

(�) =
�����
�����

Where:

 �� : Between-class scatter matrix

 �� : Within-class scatter matrix
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 � : Linear discriminant vector

Steps in LDA:

1. Compute the means for each class ( �0

for defective and �1 for non-defective).

2. Compute the scatter matrices �� and
��

3. Find the eigenvectors of ��
−1�� , and

select the eigenvector corresponding to
the largest eigenvalue as �.

4. Project data onto � for classification.

LDA is simple, interpretable, and
computationally efficient. Assumes linear
separability and equal covariance for all classes.

Implementation: LDA was implemented using
Scikit-learn with the following steps:

 Model fitting on the training dataset.

 Prediction on both training and test
datasets.

 Evaluation using metrics such as
accuracy, confusion matrix, and
classification report.

3.2.2. Voting Classifier

The Voting Classifier is an ensemble method
that combines the predictions of multiple base
models. This study employs soft voting, where
the predicted probabilities from the base
models are averaged to make a final prediction:

�(�) =
1
�

�=1

�

 � ��(�)

Where ��(�) is the predicted probability of the
��ℎ model, and � is the number of base models.

Here’s a concise description of the base models
used in Voting Classifier

1. Support Vector Machine (SVM): SVM
is a powerful classification model that
works by finding the hyperplane that
best separates different classes in the
feature space. It is effective in high-
dimensional spaces and can handle
both linear and non-linear
classification problems using kernel
functions.

2. Gradient Boosting Machine (GBM):
GBM is an ensemble method that
builds a model by sequentially adding
weak learners, usually decision trees,
where each new model corrects the
errors made by the previous one. This
method improves predictive
performance by focusing on difficult-to-
classify instances.

3. k-Nearest Neighbors (kNN): kNN is a
simple, non-parametric algorithm that
classifies a data point based on the
majority class of its k nearest neighbors.
It’s intuitive and works well for small
to medium-sized datasets but can be
computationally expensive for large
datasets.
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These base models are combined in the Voting
Classifier, which aggregates their predictions to
provide a final classification based on either
majority voting (hard voting) or weighted
voting (soft voting), where model probabilities
are considered.

3.3 Model Evaluation

Both models were evaluated on the test dataset
using the following metrics:

1. Confusion Matrix: The Confusion
Matrix is a fundamental tool for
evaluating the performance of
classification models. It shows the actual
versus predicted classifications in a
matrix format, helping to assess the
model's performance across different
classes.

Accuracy =
�� + ��

�� + �� + �� + ��

2. Precision and Recall: Measures the
proportion of true positive predictions
(defective samples) out of all actual
defective samples in the dataset. Higher
recall means fewer false negatives.

Precision =
��

�� + ��
, Recall

=
��

�� + ��

3. F1-Score: The harmonic means of
precision and recall, providing a balance
between the two. It’s useful when you

need to balance the trade-off between
precision and recall, especially in
imbalanced datasets.

�1 = 2 ⋅
Precision ⋅ Recall
Precision + Recall

4. Support: The number of actual
occurrences of the class in the dataset. It
is not a metric of model performance but
provides context for understanding the
precision, recall, and F1-score for each
class.

4.Results and Discussions

4.1. Comparison of LDA and Voting
Classifier using evaluation metrics and
confusion matrix
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Table 1. Evaluation metrics table

Metric LDA (Test Set) Voting Classifier (Test Set)

Accuracy 72.71% 81.04%
Precision (Class 0) 0.68 0.79

Precision (Class 1) 0.78 0.82

Recall (Class 0) 0.74 0.77

Recall (Class 1) 0.72 0.84

F1-Score (Class 0) 0.71 0.78

F1-Score (Class 1) 0.74 0.83

Table 2. Confusion matrix table

Model True Positives
(TP)

True Negatives
(TN)

False Positives
(FP)

False Negatives
(FN)

Linear Discriminant
Analysis (LDA)

191 158 55 76

Voting Classifier 224 165 48 43

This section presents the experimental
results of the Linear Discriminant Analysis
(LDA) and Voting Classifier models,
focusing on their performance on the test
dataset. Key metrics such as accuracy,
precision, recall, and F1-score are
highlighted to evaluate their effectiveness
in classifying defective and non-defective
samples.

For the LDA model, the test results showed
an accuracy of 72.71%. The confusion
matrix revealed 158 true negatives, 191 true
positives, 55 false positives, and 76 false
negatives. Precision for defective (Class 0)
and non-defective (Class 1) samples was 0.68
and 0.78, respectively. Recall values were
0.74 for defective and 0.72 for non-defective

samples, while F1-scores were 0.71 for
defective and 0.74 for non-defective samples.
These metrics demonstrate a balanced
performance, although the slightly lower
recall for non-defective samples indicates
room for improvement in reducing
misclassification of defective items.

The Voting Classifier produced significantly
better results, achieving an accuracy of
81.04% on the test set. The confusion matrix
showed 165 true negatives, 224 true positives,
48 false positives, and 43 false negatives.
Precision values for defective and non-
defective samples were 0.79 and 0.82,
respectively, while recall values were 0.77 for
defective samples and 0.84 for non-defective
samples. The corresponding F1-scores were
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0.78 and 0.83. The Voting Classifier’s
ensemble approach provided better
generalization and handled the complexity of
the dataset more effectively, resulting in
higher precision and recall, especially for
non-defective samples, reducing the risk of
passing defective items in quality control.

When comparing the two models, the
Voting Classifier consistently outperformed
LDA across all evaluation metrics. While
LDA achieved acceptable results with its
linear decision boundaries, its limited
complexity reduced its ability to handle more
intricate patterns in the data. The Voting
Classifier, with its ensemble approach
combining multiple base models through
soft voting, demonstrated its robustness by
achieving higher accuracy and better
handling of both classes.

These results suggest that the Voting
Classifier is more suited for quality control
processes due to its higher precision and
recall for non-defective samples, which is
critical in minimizing errors in classifying
defective products. While LDA remains a
viable option, further enhancements such as
feature engineering or hyperparameter
optimization could improve its performance.
The findings highlight the practical
implications of using ensemble methods like
the Voting Classifier in real-world quality
control, where accuracy and reliability are
paramount.

4.2Insights and Implications

1) Voting Classifier Superiority: The
Voting Classifier outperformed LDA
across all metrics, particularly in its

ability to accurately predict non-
defective products. This is crucial for
minimizing the risk of passing
defective items in quality control.

2) LDA Performance: LDA offered
acceptable performance with 72.71%
accuracy, but its linear decision
boundaries limited its effectiveness
on complex datasets.

3) Practical Implications: The Voting
Classifier's high precision and recall
for non-defective samples highlight its
suitability for real-world quality
control applications, where the cost
of misclassification is significant.

4) Future Work: Enhancements, such
as feature engineering and
hyperparameter optimization, could
further boost the performance of
both models.

5.Conclusions

This study aimed to classify defective and
non-defective samples in a quality control
process using two machine learning
approaches: Linear Discriminant Analysis
(LDA) and an ensemble-based Voting
Classifier. The results demonstrated that
the Voting Classifier outperformed LDA
across all key evaluation metrics,
including accuracy, precision, recall, and
F1-score, particularly on the test dataset.

The Voting Classifier achieved an
accuracy of 81.04%, leveraging its
ensemble nature to combine the
strengths of three base models: Support
Vector Machines (SVM), Gradient
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Boosting Machines (GBM), and K-
Nearest Neighbors (kNN). Its ability to
use soft voting allowed it to make more
informed predictions by considering the
probabilities of each base model, leading
to higher precision and recall for both
defective and non-defective classifications.
In contrast, LDA, with its linear decision
boundaries, achieved an accuracy of
72.71% but struggled with the
complexity of the dataset, resulting in
slightly lower precision and recall values.

The findings of this research underscore
the importance of using ensemble
methods in quality control processes,
where accuracy and reliability are critical
to minimizing misclassification costs. The
superior performance of the Voting
Classifier highlights its potential for real-
world applications, ensuring that
defective items are identified effectively
while reducing false negatives and false
positives.

Future research could explore additional
ensemble techniques, such as stacking or
boosting, to further enhance predictive
performance. Additionally, incorporating
advanced feature engineering and
expanding the dataset to include more
diverse quality metrics could improve
model robustness. The integration of
machine learning models like the Voting
Classifier into quality control systems
offers a promising pathway for industries
to enhance efficiency, reduce errors, and
ensure product reliability.
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