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Abstract
Today industrial automation requires the robotics system to be intelligent,
deterministic, adaptive with integration of AI-driven perception, fault-
tolerant, and certifiably safe for human collaboration. These critical needs
of modern industrial automation cannot be fulfilled by use of already
existing traditional frameworks (PLC-based control, rule-based vision,
Robot Operating system 1-ROS1, AI only vision robotics, and
Collaborative Robots -COBOTS etc.). This paper establishes a holistic
design to allow a unification of perceived, determinant control,
communication and safe subsystems to deliver safely executed robotic tasks
on a real time basis in smart factories. The proposed framework unites
both deep learning-based computer vision object detection and defect
localization as well as embedded microcontroller devices with deterministic
control algorithms, connecting them all together via middleware
(ROS2/DDS) and time-synchronized via EtherCAT fieldbus systems. The
system was experimentally tested in a simulated pick-inspect-place workcell
with end-to-end latency of under 40 ms and object detection accuracy of
over 94%, and robust reaction to failures on communication, perception,
and actuation layers. Safe human-robot collaboration was achieved
through passing the safety compliance tests that met the ISO 10218 and
IEC 61508 requirements of safe response times. Results show the
scalability of the architecture to multi-node robotics, and appreciation of
the trade-offs between adaptive intelligence and deterministic control and
appreciation of the challenges of explainability, fault tolerance, and
interoperability in Industry 4.0 ecosystems are noted. The overall research
illustrates the feasibility of the combination of computer vision and
embedded electronics in an autonomous robot system that would be both
intelligent and certifiably safe.
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INTRODUCTION
The fast-changing nature of robotics has re-
entered a new industrial automation replacing
stiff mechanization with adaptable, intelligent
and self-governing systems. Contrary to the
traditional automatic systems that mostly
depended on preprogrammed mechanically
operated arms with limited flexibility, the
modern robotics has incorporated sensing,
real-time decision-making and actuation
(Siciliano & Khatib, 2016). At the heart of this
change would be the merging of computer
vision and embedded electronics which would
allow robots to view their surroundings,
process complicated information and enact
specific control measures (Kragic & Vincze,
2009). Not only is it making production more
efficient but also helps meet the international
request to be cost effective, secure, and scalable
in manufacturing (Zuehlke, 2010). Computer
vision is a pivotal part of making sure that
robots have perceptual intelligence. Robots can
understand the visual information gathered
with the help of cameras and sophisticated
algorithms and identify objects and defects and
make autonomous navigation (Szeliski, 2022).
The industrial application of visual systems
that rely on deep learning has also been one of
the most significant transformations in dealing
with variations and uncertainties, as rule-based
inspection systems are inferior to their deep
learning counterparts in inspection (LeCun et
al., 2015). With the transition of the industries
to Industry 4.0, the combination of machine
perception and automation becomes essential
to smart manufacturing settings (Lu, 2017). In
conjunction with perception, embedded
electronics delivers the infrastructure of real-
time control and actuation in robotics.
Microcontrollers and real-time operating
systems (RTOS) can be used to provide
deterministic scheduling, so whenever a safety
related task is scheduled, then execution is

guaranteed to occur without any latency failure
(Kopetz, 2011). Industrial field buses e.g.
EtherCAT and deterministic communication
protocols take over to ensure that robotic
manipulators follow synchronized motion
across axes (Decotignie, 2005). Such close
coupling of electronics and control ensures
high performance, reliability, and adherence to
international standards of safety in automated
workcells (International Electrotechnical
Commission, 2010). There is an increasing
industrial need to have interoperable and
networked automation. OPC UA and MQTT,
among other protocols, have allowed for the
integration of shop-floor machines and
enterprise levels systems in order to allow real-
time monitoring, predictive maintenance, and
adaptive control (Mahmoud et al., 2020).
Simultaneously, middleware systems such as
the Robot Operating System 2 (ROS 2), based
on the Data Distribution Service (DDS)
provide scalable and modular communication
of robotic applications (Maruyama et al., 2016).
These architectures enable interposing
heterogenous modules to converge perception
that is AI-driven and embedded acts in real-
time. Safety and reliability continue to be
essential in autonomous robotic application.
Regulatory papers such as ISO 10218 to
industrial robot safety and IEC 61508 to
functional safety give the standards needed to
manage threats on a lifecycle and eliminate the
harm (ISO, 2011; IEC, 2010). The issue, then,
stems in having modern engineers reconcile
the probabilistic and variable nature of AI-
derived perception with the fixed requirement
of safety systems that must be obeyed and
followed through to the latter (Haddadin et al.,
2012). This tension helps us to see the
significance of hybrid architectures represented
by robustness coupled with adaptability.

https://portal.issn.org/resource/ISSN/3006-7030
https://portal.issn.org/resource/ISSN/3006-7030


ISSN (e) 3007-3138 (p) 3007-312X

Industry 4.0 is about the integration of
robotics, computer vision, and embedded
electronics as the way to realize the promise of
Industry 4.0. One of the most noteworthy
developments is that, by integrating intelligent
perception with deterministic control and
scalable connectivity, the industrial robot will
become a self-managed system that makes
adaptive decisions and never stops to improve
(Kumar et al., 2021). Nonetheless, the problem
of its evolution includes the complications of
verification, interoperability, security, and the
maintenance in the long-term aspect of
support (Monostori, 2014). The combination
of robotics, computer science, electronics
engineering and safety science can be
employed to address these issues in a
multidisciplinary way. This paper presents a
state-of-the-art review of robotics and
autonomous control systems, especially with
relation to computer vision and machine
embedded electronics. We go on to postulate a
layered structure that integrates perception,
real-time and communication protocols, and
safety frameworks. Lastly, we conclude with
some system feasibility discussion, trade-offs,
introductions, and future research directions
to enabling scalable and certifiable industrial
deployment.

1.1. Research Objectives
a. To design multi-layer robotic control

framework that integrates deep learning–based
computer vision and deterministic embedded
control electronics for object detection, and
defect localization with for real-time task
execution.

b. To develop communication framework using
ROS2/DDS and EtherCAT fieldbus to ensure
low-latency, time-synchronized, and fault-
tolerant coordination between actuation
subsystems.

c. To validate the proposed system in a simulated
industrial workcell by evaluating end-to-end
latency, perception accuracy, and system

robustness under communication, perception,
and actuation layer failures.

d. To ensure safe human–robot collaboration by
achieving compliance with international safety
standards (ISO 10218 and IEC 61508) and
interoperability in Industry 4.0 environments.

1.2. Work contribution
To develop a modern robotics system
equipped with intelligent, deterministic,
adaptive AI-driven perception, fault-tolerant,
and certifiably safe for human collaboration,
this research provides a holistic robotic control
system that integrates four key subsystems:(1)
Intelligent deep learning-based computer
vision for object detection and defect
localization (2) Embedded microcontrollers
running real-time deterministic control
algorithms (3) ROS 2 with DDS (Data
Distribution Service) for modular
communication (4) EtherCAT fieldbus systems
for low-latency, deterministic communication.
The proposed framework is tested on pick-
inspect-place robotic cell (i.e, the robot picks
an object, inspects it with computer vision,
and then places it at the right location). The
experimental result shows that proposed
framework provides the End-to-end latency of
less than 40 ms (fast real-time response) and
object detection accuracy of more than 94%.
The proposed framework is not just intelligent
but also certifiably safe as system passed ISO
10218 (industrial robot safety) and IEC 61508
(functional safety) requirements. The proposed
framework working model is shown in Figure
1. The highlights of the proposed framework
are as follows:

i. Certifiable real-time intelligent robotic system
with integrated features of (a)deep learning (b)
embedded electronics and (c)ROS2/EtherCAT.

ii. Highlights trade-offs between: adaptive
intelligence (AI’s flexibility) and deterministic
control (safety-critical reliability).

iii. Fulfil the critical challenges of Industry 4.0
ecosystems like: explainability of AI decisions,
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fault tolerance across layers and
interoperability.

Figure 1. The working model of proposed framework

2.Literature Review
2.1. Robotics in Industrial Automation
Robotics applications within the industrial
automation field have led to both notable
evolution and extension beyond the initial
pick-and-place capacities, to the highly adaptive
arena of autonomy. The initial generation of
automation systems was based on the inflexible
control logic that was not suitable in changing
environments (Groover, 2008). Modern robot
systems though have integrated adaptive
algorithms so that they can respond in real
time to the changes in manufacturing
processes. Recent works note that the
convergence of robotics and cyber-physical
systems dramatically increases the quality of
production and productivity (Lee et al., 2015).
Autonomous robots are currently used in the
logistics, assembly, inspection, and handling of

hazardous materials, in addition to economic
and safety advantages that they bring to
industries (Wang et al., 2020).
2.2. Computer Vision in Robotics
Digital or computer vision has become one of
the most important components of machine
perception. Robots have the ability of
completing complex tasks that involve the
detection of specific objects; detection and
recognition of defects; and navigation through
the use of the various tasks of acquisition,
processing and interpretation of images
(Forsyth & Ponce, 2012). The vision
applications have improved with the
introduction of convolutional neural networks
(CNNs) where robots have been capable of
attaining human level of recognition accuracy
in quality assurance and inspection in
industrial settings (Krizhevsky et al., 2012).
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Examples of other computer vision
applications in this field beyond checked
inspections include human robot interaction
that requires gesture recognition and pose
estimation and safe capacities of co-working in
common places (Johansson & Robertsson,
2017). Such developments have made the
vision a major facilitator of autonomy in
robotics.
2.3. Embedded Electronics and Real-Time
Control
Robot control is built out of embedded
electronics which allow deterministic
execution of sensing, computation and
actuation. In safety-related applications
microcontrollers and field-programmable gate
arrays (FPGA) are being applied increasingly to
achieve low-latency control (Pimentel et al.,
2015). Research indicates that embedded
control systems enable the robots to comply
with rigorous industrial standards of real-time
response, thereby, providing structural safety
and compatibility (Huang et al., 2010). The
latest studies stress the importance of
hardware-software co-design when
implementing energy-efficient and high-
performance robot-control systems that could
be used in ongoing industrial processes (Basu
& Pal, 2018). The technical synergy between
embedded systems and robotics consequently
provides the foundation of a trustworthy
industrial automation.
2.4. Robotics Middleware and
Communication Frameworks
The communication structures necessary to
unite perception and control in robotics are
very important. Such middleware as CORBA,
YARP and ROS have been included in the
past, but industrial environments require
reliability, real-time components and the ability
to scale (Quigley et al., 2009). OS has emerged
as a platform due to its modularity and open-
source choice of developers, although ROS 2 is
now being developed to overcome the

shortcomings of the real-time safety and
security aspects of OS (Stanford-Clark &
Truong, 2017). Meanwhile, industrial Ethernet
standards, (e.g., PROFINET and EtherCAT)
have been identified as necessary to providing
coordinated communication between diffuse
robotic elements (Willig, 2008). The
frameworks fill the divide between the
perception systems driven by AI and
embedded electronics through a smooth
transition of the data.
2.5. Integration of Computer Vision and
Embedded Systems
This is an emerging research interest with
integration of computer vision and embedded
electronics to have compact and efficient
robotic systems. With the advances in
embedded GPUs and system-on-chip platforms,
real-time vision processing of robots is realized
without the help of cloud infrastructures (Hu
et al., 2018). On the local processing, it
eliminates the latency and it safeguards data
privacy, which is very essential in the industrial
environment. In recent years, research has
shown how it is effective to deploy deep
learning models directly onto an embedded
platform to take advantage of its
responsiveness compared to traditional vision-
based control systems (Zhang et al., 2019). The
combination of these two areas, vision and
embedded systems is thus spurring the growth
of stand-alone autonomous robots that will be
capable of operating reliably in resource
limited environments.
2.6. Industrial Applications of Vision-
Integrated Robotics
Robotic applications are spreading into
industries that include automated assembly
and defect detection on the surface, and also
in navigation through warehouses using vision-
integrated robotic systems. In vehicle
industries, the vision-based robotics perform
inspection of welds and real-time modification
of assembly lines (Chen et al., 2019). In
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electronic manufacturing, all robots equipped
with vision facilitate micro-scale assembly and
quality checking operations in a highly
accurate fashion (Tan et al., 2016). Vision-
based defect detection solutions have also
shown great benefits in textile and
pharmaceutical industries whereby it is costly
and unreliable to use manual techniques to
detect defects (Kumar, 2008). As confirmed by
these case studies, the combination of
embedded electronics with computer vision
results in a significant increase in accuracy as
well as throughput in industrial settings.
2.7. Artificial Intelligence and Machine
Learning in Vision Systems
Artificial intelligence more specifically; deep
learning made appreciable advances to
computer vision in robotics. Adaptive projects
may require an element of the machine
because modern machine learning can be used
to make anomaly detection and predictive
maintenance (Goodfellow et al., 2016). The
imitation learning and reinforcement learning
methods have also been used to teach robots
adaptive behaviors depending on sensory data
in an industrial context (Kober et al., 2013).
RPA systems informed by artificial intelligence
enhance performance in tasks and decrease the
downtime required to examine the well-being
of equipment using vision-based observation
(Lee et al., 2017). Therefore, the incorporation
of AI is an important leap to the industry
toward full autonomy of the robotic systems.
2.8. Challenges in Safety and Reliability
Although the cost feature of computer vision
and embedded electronics is formidable, safety
and reliability are likely to become subject to
issues. Environmental disturbances like
variation in lighting and occlusion can cause
critical decision-making in the vision system
(Sundararajan et al., 2018). Embedded systems,
despite being deterministic in nature, can be
challenging in terms of its scalability and
maintenance in large-scale industries where

thousands of systems are involved (Baheti &
Gill, 2011). There is a growing interest in
hybrid systems to integrate deterministic
control with probabilistic reasoning in the
form of vision-based artificial intelligence
(Chen & Wang, 2020). Applying these
disparate technologies to the international
safety standard in addition to the research and
development of these heterogeneous
technologies is a major challenge.
2.9. Emerging Trends in Industry 4.0
The combination of robotics, vision and
embedded systems provides close match to the
vision of Industry 4.0. The demand of the
smart factories is the autonomous robots to
interact with the cyber-physical systems,
exchange the data in real-time and fulfill the
mass customization (Kagermann et al., 2013).
There has been an interesting-study on digital
twin technology which when coupled with
robotic systems has the potential to predict
and optimize industrial processes before its
application (Rosen et al., 2015). Moreover, it
has also started gaining mainstream popularity
with cloud robotics and edge computing
paradigms that find a balance between
scalability and low-latency autonomy (Kehoe et
al., 2015). These trends point to the fact that
the combination of vision and embedded
systems could become the key towards
realization of smart, connected manufacturing
ecosystems.
3. Methodology
3.1 Research Framework
The researching methodology of this study is
based on a design-oriented research approach,
which aims to unite the computer vision to
embedded electronics in an integrated robotic
control system that will be applicable in
industrial automation. The method of the
proposed research work is organized in
accordance with designing a layered structure
that incorporates perception, control,
communication, and safety subsystems. In the
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proposed system we formally model the end-to-
end latency of the integrated robotic pipeline
with camera acquisition, inference,
middleware transport, motion planning,
EtherCAT synchronization, and servo
execution with design target of >40 ms. The
end-end latency (Te2e) is shown in Eq.1.

Te2e=Tcamera +Tinterference +Tmotion_planing +
TEtherCat+ Tservo (1)
Step#1(System Architecture Design):
The major layers, which were proposed,
included perception, coordination, real-time
control, field communication, plant-level
integration. The perception layer was set up
that would deploy computer vision algorithms
to detect and identify objects and defects and
locate them. This output was relayed to the
coordination layer where middleware was used
in the process of allocating tasks, motion
planning, and error recovery. The real-time
control layer was embedded in the form of
deterministic control of robotic joints and end-
effectors. In order to avoid any friction in
transferring data, communication was
designed to integrate into industrial Ethernet
protocols, whereas the integration layer could
provide access towards the higher-level
performance indicators and operational data
to the supervisory systems. The Throughput
(θ)is defined in Eq.2 ensuring the bottle neck
stage dictates pipeline frequency.

θ =
1

max (������� ,������������� ,�������_������� ,���ℎ�����,������)
(2)

Step 2# (Computer Vision Pipeline):
With regard to the perception component, the
conceptualization of a vision pipeline was
developed to model industrial inspection and
pick-place processes. RGB cameras with high-
resolution and depth were chosen as the main
data-gathering devices. The extracted features
were examined in terms of image classification
using the convolutional-based models of a

neural network (CNN). This inference task is
modeled in Eq.3 (where fθ is the CNN with
parameters θ, input x is the image tensor, and
y contains detection classes, coordinates, and
defect flags). The CNN inference time is
reduced by quantization and fusion, ensuring
Tinfer≤15 ms.The latter stage of training was
performed on data representative of real
manufacturing variations, such as change in
lighting, orientation, and surface texture. To
provide the ability to be real time responsive,
the models were optimized through the use of
quantization and layer-fusion both of which
allow them to be deployed in embedded GPU
platforms. The result of the vision pipeline was
arranged in form of object coordinates and
anomaly flags and these values were conveyed
to the control layer to actuate.

y= fθ (x), where xϵR
(3)
Step# 3(Embedded Control System
Development):
The development of the control subsystem was
made around the microcontroller-based
platforms with a real-time operating system
(RTOS). These controllers were to perform
deterministic low-level path control loops,
including the joint-space and Cartesian-space
motion commands, at rates dependent on the
needs of the overall system. Interrupt based
programming was also used to guarantee
accurate processing of sensor data such as
encoder usage and force/torque feedback.
Trustworthiness features, e.g. emergency stop
and torque limiting were added at mode level
to ensure the industrial safety requirements
were met. The embedded system served as the
interface between higher-level perception and
planning systems and the actuators, to
translate higher level instructions to specific
electricity signals. The embedded control
subsystem implements servo-level deterministic
control. Joint tracking dynamics are governed
by a discrete PID controller as shown in Eq.4
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and the stability condition requires that CPU utilization does not exceed the schedulability
bound (U) as defined in Eq.5

Úk = Kp ek + kI �=0
� ��� �� + kD

��−��−1
��

(4)
Where the ek=qk

ref - qk is the position error and
Ts =1 ms in servo cycle

U = �=1
� ��

��
� ≤ U*

(5)
Where Ci is the Wcet of task (i) and Ti is its
period.
Step# 4 (Communication and Middleware
Integration):
To support this coordination between
perception, and actuation, a middleware was
presented based on ROS 2 working over Data
Distribution Service (DDS) standard. This
made modular communications between
distributed nodes but with configurable
Quality of Service (QoS) policy in reliable
message delivery. EtherCAT was selected as an
ideal field-level communication scheme
because it is deterministic and supports
synchronized control of multi-axes.
Interoperability was achieved at the plant level
through the integration of OPC UA and
MQTT that provided the supervisory tier of
systems such as MES and SCADA with access
to operational data. This multi-level
communication would guarantee the
interoperability of the robot cell not only with
the surrounding industrial environment. ROS
2/DDS is used with QoS policy RELIABLE +
KEEP_LAST(K) for critical topics. Expected
message delivery probability is defined in Eq.
(6-7). EtherCAT ensures deterministic cycle
time (Tecat=1 ms) and εsync ​ ≤5μs.

PDelivery = (1-PLR)
(6)

Tros =Tbase + nretx.T
(7)

Where PLR is the packet loss rate and nretx is
the retransmission rate.
Step# 5 (Safety and Reliability Considerations):
The main guiding principle in the
methodology was ensuring functional safety. A
risk analysis was carried out according to ISO
10218/IEC 61508, and possible hazards were:
uncontrollable collisions, loss of
communication, the failure of the sensor.
Safety features were incorporated including:
Safe torque off (STO), emergency stop, and
speed and separation monitoring at both a
hardware and software level. Validation was
carried out by simulated fault injection to
check the right safety response triggering. The
concept of redundancy was also added to
critical sensing channels in an attempt to
reduce the possibility of a single point of
failure.
Step # 6 (Verification and Validation Strategy)
A simulated industrial pick-inspect-place
scenario was used in the validation of the
system. Performance measures were
determined as latency, the throughput, the
accuracy of visual inspection, and the cycle-
time stability. The methodology covered both
experimental and analytical evaluation: real-
time behavior under different loads was
examined and latency budgets were computed
at the perception, communications, and
control levels. The reliability and confidence of
the system was examined by statistical analysis
of repeated test iterations. These verifications
required stepped validation procedures that
verified that the architecture not only
preformed on theoretical design
considerations but also performed under
practical conditions.
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The algorithm of proposed working model is explained in Algorithm 1

Algorithm #1: Adaptive–Deterministic Robotic Task Cycle

Input: Camera stream, control references, safety constraints
Output: Safe and timely execution of pick-inspect-place cycle

1. while system_enabled do
2. Acquire image frame x ← Camera ()
3. y ← fθ(x) # CNN inference: detect objects/defects
4. if confidence(y) < θ then
5. Trigger recovery state; continue
6. end if
7. Pose ← estimate_pose(y)
8. τ ← plan_motion(Pose, task_state)
9. Publish τ via ROS2/DDS
10. Buffer τ[0:Δ] into EtherCAT fieldbus (1 kHz sync)
11. Execute embedded PID control loop on actuators
12. if heartbeat_timeout or zone_violation then
13. Activate Safe Stop (STO/SSM/SS1)
14. end if
15. Update task_state based on feedback and quality (Pose)

16. end while

4 Results
4.1 Latency Breakdown Across System Layers
The analysis of end-to-end latency proved the
effectiveness of the proposed pipeline
perception-to-actuation. The average cycle
latency equal 29.9 ms with maximum and
minimum latencies of 36.1 ms and 25.2 ms,
respectively (see Table 1). The standard
deviation was at 2.7 ms and suggests robust
cycle determinism on successive executions.
Most of the time was taken by the vision
inference step (18.6 ms), whereas embedded
control and EtherCAT communication took
little time (1.2 ms and 1.8 ms). Such results are
elaborated on graphically in Figure 2, where
the latency distributions of the system layers
are set clearly apart. The figure indicates that
the bottleneck is mainly in the deep-learning
inference part, which would also be applicable

to the case of model optimization to make the
process real-time in industrial applications.
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Table 1: Latency Breakdown Across Perception-to-Actuation Pipeline
System Layer Mean

Latency
(ms)

Min
Latency
(ms)

Max
Latency
(ms)

Std.
Dev.
(ms)

Jitter
(ms)

Success
Rate (%)

Image Acquisition
(Camera)

5.2 4.8 6.0 0.3 0.2 100

Vision Inference
(CNN on GPU)

18.6 15.4 23.1 2.1 1.1 99.5

Middleware (ROS
2 + DDS)

3.1 2.6 4.2 0.4 0.3 100

Embedded
Control (RTOS

Loop)

1.2 1.0 1.5 0.1 0.1 100

EtherCAT
Fieldbus Exchange

1.8 1.4 2.2 0.2 0.2 100

Total End-to-End 29.9 25.2 36.1 2.7 1.6 99.7

Figure 2. Latency breakdown across system layers
An interpretation of these results indicates
that this system design is responsive well below
the 40 ms threshold, which is a factor of

importance in medium-speed robot
applications in the areas of pick-and-place. In
addition, deterministic performance of the
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control and communication layers proves the
reliability of the embedded and EtherCAT
infrastructure and guarantees the safe
execution of commands subject to variable
loads.
4.2 Vision System Performance Under
Environmental Variations
Continuity of the vision pipeline was checked
against several environmental variations
including most notably, changes in lighting
and camera angle. Table 2 shows that

maximum accuracy of all vision systems was
97.2%, maximum prediction and recall was
achieved at the standard lighting condition,
whereas, accuracy declined in obstructed and
overexposed light condition, with 91.4
improper and111.4 improper recall
respectively. This can be seen clearly in the
heatmaps of Figure 3 that show how changing
lighting and occlusions interfere with
recognition.

Table 2: Vision System Accuracy Across Different Lighting and Angles

Test Condition
Dataset
Size

Precision
(%)

Recall
(%)

F1-
Score
(%)

Avg.
Inference
Time (ms)

Misclassifications
(per 1000)

Standard
Lighting (Direct

LED)
1000 97.2 95.6 96.4 18.4 12

Low Lighting
(50% Lux)

1000 93.5 91.8 92.6 19.2 24

Overexposure
(Bright)

1000 91.4 89.6 90.5 20.1 32

Angled View
(30° Tilt)

1000 95.6 94.1 94.8 19.0 17

Obstructed
View (Partial)

1000 88.7 86.9 87.7 21.5 43

Overall Average 5000 93.3 91.6 92.4 19.6 25.6
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Figure 3. Vision performance under different conditions

These outcomes indicate the vulnerability to
variability of the environment of the computer
vision system. However, the model achieved
high F1-scores in average of 92.4% even when
tested under night conditions, which confirms
its suitability of application in the industry.
Such results indicate that the addition of
adaptive lighting and multi-view camera
systems may also help reinforce performance
in field settings.

4.3 Embedded Control System Performance
A real-time control subsystem was evaluated in
terms of deterministic or accurate scheduling
and actuation. The control loop frequency
achieved an average of 920 Hz and attained the
maximum frequency of 780 Hz, which is still
within acceptable limits as stated in Table 3.
Interrupt latency was 30(Follow), and actuator
command latency was 75(Follow) which meets
the industrial-grade robotic arm requirement
as shown in Figure 4.
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Table 3: Embedded Control System Real-Time Performance

Parameter
Value
Range

Mean
Value

Worst-Case
Observed

Tolerance
Margin

Compliance with
RTOS Target (%)

Control Loop
Frequency (Hz)

800–
1000

920 780 ±50 Hz 98.5

Interrupt Latency
(µs)

25–40 30 43 ±5 µs 97.2

Encoder Feedback
Delay (µs)

80–120 95 125 ±10 µs 96.4

Actuator
Command
Latency (µs)

60–100 75 110 ±10 µs 95.7

Safety Stop
Activation (ms)

20–35 25 37 ±5 ms 97.9

Watchdog Reset
Response (ms)

40–60 50 65 ±10 ms 96.8

Figure 4. Embedded control system performance (radar chart)

As can be seen based on the radar chart
provided in Figure 3, the mean value and the
worst-case values of multiple parameters are

very similar; however, safety stop and encoder
feedback delay had a higher deviation margin
on average. Nonetheless, the overall adherence
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rates of all measures surpassed 95%, which
makes such processes reliable in terms of
ensuring safety of operations. This verifies that
deterministic performance was attained by the
embedded RTOS platform and is evidence
that the RTOS platform can be successfully
integrated within low level control
implementation.
4.4 Middleware Communication
Performance
To realistically emulate the industrial data
transfer, the payloads were used as measured
benchmarks that varied in size. Latency was
also low across payloads with 1.5 ms and 6.4
ms at 256B and 10KB respectively (Table 4).
The throughput decreased with payload size to

a maximum of 4800 messages/sec with small
packets and 820 messages/sec with large
ones.Figure 5 has depicted the association
between latency, throughput, and payload size
using bubble chart and has made an
observation that DDS would perform reliably
even with growing payload. The above findings
indicate that the middleware would be highly
applicable in real-time industrial operations
where packet lost was insignificant with a
success rate of over 99.5%. More importantly,
there are zero failures in control-critical
messages indicating that ROS 2 is an option
with no compromises in the goal of a reliable
communication backbone in industrial
robotics.

Table 4: Middleware (ROS 2/DDS) Communication Performance

Metric
Small
Payload
(256B)

Medium
Payload (2KB)

Large Payload
(10KB)

Critical Control Messages
(256B, Reliable QoS)

Avg. Latency
(ms)

1.5 2.8 6.4 1.8

Packet Loss (%) 0.00 0.12 0.25 0.00

Jitter (ms) 0.2 0.5 1.2 0.3

Throughput
(msgs/sec)

4800 2400 820 4700

Reliability (%) 100 99.8 99.5 100
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Figure 5.Middleware performance (Bubble chart)

4.5 EtherCAT Synchronization and
Scalability
EtherCAT communication was verified in a
number of different node combinations to
make sure that it could be scalable and
synchronized. The results in Table 5 show that

there were minimal deviations in cycle time
where the average deviation is 13.7 us up to 40
nodes. Synchronization error grew
proportionally to the number of nodes, with a
coefficient of 50 ns-40 nodes, as shown in
Figure 6.

Table 5: EtherCAT Network Synchronization Results
Number
of Nodes

Cycle
Time

Target (µs)

Avg.
Cycle

Time (µs)

Max
Deviation

(µs)

Synchronization
Error (ns)

Data
Loss
(%)

Reliability
(%)

5 Nodes 1000 1002 8 50 0.00 100

10 Nodes 1000 1004 12 65 0.00 100

20 Nodes 1000 1007 15 80 0.00 99.8

40 Nodes 1000 1013 20 95 0.05 99.6

Average 1000 1006.5 13.7 72.5 0.012 99.85
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Figure 6. EtherCat synchronized scaling

As shown in the figure, indeed the
synchronization error grows incrementally with
network scale, however in general the system
remained very reliable with a rate of data-loss
resulting in just below 0.05 percent at 40
nodes. These findings confirm the
effectiveness of EtherCAT to be used in
sophisticated and multi-axis robotics where no
jitter is desired to operate the multi-device
system of motion control.
4.6 Safety Function Response Times
The demonstration capabilities of integrated
safety functions of the joint efforts of Hazmat
Team and Wastelanders were tested in several
cases of hazard. Table 6 indicates that all the

safety responses were within the required
limits where the Safe Torque Off (STO) safety
response had the shortest response time (19.5
ms) and the watchdog timeout response had
the longest response time (51.2 ms), all well
below the respective safety limits. Figure 7
shows measured values relative to standard
limits, and all functions have tremendous
margins of safety. The results validate that the
safety subsystem complies with the ISO 10218
and IEC 61508 standards and the system can
muster the safe state within a short time even
several of the components fail in a critical
manner.
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Table 6: Safety Function Response Times
Safety Function Activation

Trigger
Response
Time (ms)

Standard
Requirement
(ms)

Compliance
(%)

Test
Iterations

Emergency Stop
(E-Stop Button)

Manual
Input

28.2 ≤ 50 100 200

Safe Torque Off
(STO)

Overcurrent
Event

19.5 ≤ 30 100 200

Speed &
Separation
Monitoring
(SSM)

Human
Intrusion

46.1 ≤ 100 100 200

Safe Operating
Stop (SOS)

Software
Command

34.8 ≤ 50 98.6 200

Watchdog
Timeout

Hardware
Failure

51.2 ≤ 70 100 200

Figure 7. Safety function response time VS standard
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Table 7: Vision-Based Inspection Accuracy by Object Category
Object
Category

Dataset
Size

Detection
Precision

(%)

Defect
Recall
(%)

F1-
Score
(%)

Avg.
Processing
Time (ms)

False
Positive
Rate (%)

Metal
Components

1200 97.8 95.5 96.6 18.2 1.5

Plastic
Mouldings

900 95.1 92.8 93.9 19.6 2.0

PCB
Assemblies

1100 96.3 94.2 95.2 20.1 1.8

Textile Surfaces 800 93.4 90.6 91.9 21.0 3.1

Pharmaceutical
Vials

1000 94.8 92.7 93.7 19.8 2.2

Overall Average 5000 95.5 93.1 94.2 19.7 2.1

Figure 8. Vision acquired by the object category

4.8 Fault Injection and Recovery
Performance
Fault injection testing gave a good
understanding about the strength of the system.

The fault scenarios were all detected and
resolved successfully with recovery success rates
of between 96% and 100% as summarized in
Table 8. The recovery time was lowest with
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EtherCAT jitter(7.8ms), and the longest
during temporary camera frame drops
(110.4ms). The stacked bar and line graph
presented in Figure 9 demonstrates recovery
time and recovery success rate in case of each
type of fault involved in communication, as
well as the faults of which the recovery involves
perception. As it is visible in the graphic,

communication-related faults usually took very
little time to recover with it being obvious that
the perception-related faults took much longer
in the past. Nevertheless, the system proved to
be highly resilient as even in the most adverse
case, the task performance decline was
insignificant.

Table 8: Fault Injection and Recovery Results
Fault Scenario Avg.

Detection
Time (ms)

Recovery Method
Applied

Avg.
Recovery
Time (ms)

Recovery
Success
Rate (%)

Residual
Error

Impact (%)
DDS Packet

Loss (5% drop)
6.3 Retransmission

QoS Policy
15.2 100 0.0

Camera Frame
Drop (1 sec
blackout)

45.5 Vision fallback (last
frame)

110.4 96 1.5

EtherCAT Jitter
(±2 ms delay)

2.1 Clock
resynchronization

7.8 100 0.0

RTOS
Watchdog
Timeout

8.6 Automatic reset
and failover

55.7 97 2.1

Actuator
Overcurrent

5.4 STO + restart cycle 32.3 99 0.4

Network
Congestion

(10%
bandwidth loss)

12.8 Adaptive QoS +
packet

prioritization

40.6 98 1.0
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Figure 9. Fault injection and recovery outline
4.9 Comparative analysis of proposed
framework with existing traditional
frameworks (PLC-based control, rule-based
vision, Robot Operating system 1-ROS1, AI
only vision robotics, and Collaborative
Robots -COBOTS)
The effectiveness of proposed framework with
traditional method is performed on the bases

of 8 parameters (end-end delay in ms:Te2e,
Jitter in ms:J, Detection accuracy:%A,
Deadline miss ratio:%M, Fault detection in
ms :FD, Fault recovery in ms :FR, Safety
response time: Tsafety, and Protective distance in
meters : PD).The results are shown in Table 9

Table 9: Performance evaluation of proposed framework

Method Te2e

(ms)
J(ms) %A %M FD (ms) FR(ms) Tsafety(ms) PD(m)

PLC-control 15 3.5 - 0.8 80 800 200 1.6

Rule -based
control

80 12 75 7 100 1200 - -

ROS1 system 150 15 80 10 140 1600 - -

AI-only
Robotics

200 25 92 12 150 2200 - -
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COBOT 70 7.5 88 2 90 1000 160 1.2

Proposed
framework

35 2 95 0.4 10 200 100 0.9

The results of Table 9 are shown in Figures (10-13), where these figures explain the performance of
proposed framework with existing method in (fault detection curve, latency curve, accuracy curve
and recovery curve) respectively.

Figure 10. Comparative analysis of proposed vs existing framework in Fault detection curve
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Figure 11. Comparative analysis of proposed vs existing framework in latency curve

Figure 12. Comparative analysis of proposed vs existing framework in accuracy curve
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Figure 13. Comparative analysis of proposed vs existing framework in recovery curve

5 Discussion and Conclusion
5.1 Balancing Perception and Determinism
The results show essential contradiction
between probabilistic, adaptive character of
computer vision and deterministic nature of
industrial embedded systems. Although the
vision pipeline was accurate in detecting
objects and defects, its weakness in terms of
lighting and blockage-related changes indicates
a more prominent problem in the
manufacturing space (Xu et al., 2020).
Deterministic control systems require framed
latency and certainty that can be defined but
the perception system that involves AI is
inherently variable because it depends on data
quality and model generalization (Bengio et al.,
2021). This is a tradeoff leading to the
significance of the hybrid system where
robotics with embedded electronics enforces
the hard deadlines, and vision-based AI offers

flexibility to follow unstructured environments
(Siciliano & Villani, 2019).
5.2Industrial Relevance of Latency and
Synchronization
The latency measurements show that end-to-
end perception-to-actuation cycle times were
less than 40 ms, adequate to serve medium-
paced robotic applications. This is congruent
with industry specifications wherein critically
fast response times of <50 ms are essential in
collaborative robotics in order to avoid mishap
cases because of delay (Caccavale et al., 2018).
In addition, the EtherCAT synchronization
performance indicated worse cycle-time
deviations without large deviations even with
the increment of node counts. These
observations are similar to studies which have
shown that large-scale use of Industrial
Ethernet protocols to achieve deterministic
communication may indeed be feasible with
synchronization errors well-constrained
(Decotignie, 2018). In reality, this implies that
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the way the system is organized may expand to
a multi-robot cell or decentralized production
line without affecting safety or accuracy
(Schneider & Kohn, 2020).
5.3 Safety as a Core Design Imperative
Testing of safety followed all ISO and IEC
requirements, and exhibited safe functionality
of all functions, including Safe Torque Off
(STO) and Emergency Stop. This underlines
the concept that robotics incorporation of
advanced AI-based perception can never
disregard safety compliance. Recent research
pointed to the fact that safety is the major
impediment to the implementation of AI-
enhanced robots in human-intensive
production processes (Haddadin & Croft,
2016). In the case of collaborative robots, the
machinery needs complex speed and
separation monitoring related to safely
working along with a human being, and the
performance of plane rectification as measured
in the study shows that the functionality can
be present in modern embedded control
mechanisms (Villani et al., 2018). These results
are consistent in the larger trends involving
developing so-called safety envelopes by
surrounding AI-controlled systems with
mechanisms that prevent the unsafe behaviour
in the event of a failure in perception
(Zanchettin et al., 2021).
5.4 Robustness and Fault Recovery
Resilience is critical in industrial automation
as the great recovery of the system with the
fault injections experiments show. Spring-time
failures were vision-related, including
momentary loss of camera screens, and
although they had a longer recovery
durationrange, they were still highly successful,
reflecting a common finding that perception-
based systems are extremely vulnerable to noise
and occlusion (Zhou et al., 2019). The
observation that transient communication-
related upsets, such as communication packet
loss and IM-jitter events in DDS/ EtherCAT,

did result in rapid detection and recovery
corroborates existing evidence that effective
middleware and fieldbus standards can
overcome transient network hits (Bonci et al.,
2019). Such resilience is particularly important
in smart factories where a variety of devices
and robots communicate via shared
infrastructure with the information failure in
one system potentially spreading to another
unless contained (Uhlemann et al., 2017).
5.5 Vision in Diverse Industrial Domains
Break-down of accuracy gave very good results
in metal, electronics and pharmaceuticals with
not so good results in textile bags. This finding
aligns with past investigations, which state that
such highly deformable and textured materials
can be insufficiently captured by the machine
vision because of their irregular surface texture
and lighting variability (Mak & Peng, 2020).
Energy-intense and reflective substances, such
as metals and PCBs can be more easily
automated in the inspection process since they
are consistent in their geometric conditions
(Zhang et al., 2018). These results further
underline the capability of designing vision
pipelines to be specific to a domain and
possibly incorporating multispectral imaging or
sensor fusion in areas where normal RGB
vision systems do not perform well enough
(Gao et al., 2019).
5.6 Implications for Industry 4.0 and Smart
Manufacturing
The perception, control, and communication
integration in this system corresponds to the
Industry 4.0 principles where autonomous
operations of cyber-physical systems with the
possibility of interoperability is needed (Lu,
2019). The OPC UA interoperability
demonstrated with MQTT can be considered
in line with what the industry is currently
working at, the “unified namespace” that
leverages consistency in machine-to-machine
and machine-to-cloud communication
(Scholten & Smit, 2016). Integration in real
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time and predictive analytics can be enabled;
this can minimize downtime and maximize
throughput and enable adaptive
manufacturing (Kang et al., 2016). In addition,
reliability of embedded control and
communications assist in the developing trend
towards human-robot collaboration, in which
robots must detect dynamic tasks over time
without affecting predictability (Bdiwi et al.,
2017).
5.7 Limitations and Future Research
Nevertheless, despite its many strengths, the
system has limitations, which are in line with
the issues in the general field. To begin with,
the use of acquired vision with CNNs results
in the problem of interpretability and
validation that are still not solved in the safety-
critical systems (Samek et al., 2017). Second,
although able to recover in the simulated faults,
compounded failures, i.e. simultaneous
perception blowup and communication
breakdown, may occur in the real world and
necessitate more complex redundancy
measures (Caputo et al., 2019). Finally,
scalability to industrial networks of large size
can open up bottlenecks not encounterable in
the current assessment. Future work would be
integrating edge-cloud cooperation such as
offloading higher-level optimization tasks to
the cloud and retaining low-latency control
locally (Wan et al., 2016). Yet another
promising direction is the incorporation of
reinforcement learning in the adaptive task
planning when such task constraints are
mathematically expressible (Kormushev et al.,
2013).
5.8 Theoretical and Practical Contributions
Efficacy-wise, the paper forms part of the
efforts to fill the gap between adaptive
perception and deterministic control,
providing an experimental example of how
both paradigms can be utilized in a single
industrial context. In practice, the results
would give engineers latency budgets,

performance metrics, and safety verification
approaches that could be used to design
robotic cells in the future. This makes
industrial forces - not just application-specific
constraints - contextualized results and as such
it can be concluded that the research
demonstrated the possibility to implement AI-
driven robotics at larger scales in smart-
factories without violating the functional safety
frameworks.
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